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Chapter 1 

Introduct ion  

Metals and alloys are materials of a continuing scientific and technological importance. 

These include steels, permanent magnets, high-temperature refractory compounds, cat- 

alytic nano-assemblies just to mention a few. Design of new materials with desired or 

new properties is a frontier area of research in condensed matter physics and materials 

science. Valuable knowledge of phase stability in metallic alloys comes from both theory 

and experiment. Developing theoretical methods lead to microscopic understanding of 

the observed phenomena which in turn provides the clue for designing of materials with 

desired or improved properties. The purpose of the present work is to develop a general 

and reliable theoretical method to predict alloy phase stability from first principles, and 

to apply it to alloys that have important properties. First we shall define some terms and 

concepts. 

An alloy is a mixture or solid solution of two or more elements. In a substitutional alloy 

the atoms of one element replace the atoms of the other. An interstitial alloy with atoms 

of one element occupying interstitial positions between the atoms of the other can be 

viewed as a substitutional alloy with substituted interatomic vacancies treated as a type 

of atoms. Properties of materials are related to their microstructure, which is determined 

by the number of phases present, their proportion, and their composition. The key issues 

in alloys are the identification of stable phases and the instability of these stable phases 

on raising temperature as one varies the composition. A phase diagram, which helps to 

predict or explain the microstructure, is a graphical plot showing the relationships between 
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the various phases that appear in a particular system under equilibrium conditions. A 

major component of such understanding is the understanding of electronic structure of 

alloys. 

Most of the the properties of solids can be traced to the behaviour of electrons, the 

"glue" that holds atoms together to form a solid. An important aim of the condensed 

matter theory is therefore calculating the electronic structure of solids. The theory of 

electronic structure is not only helpful in understanding and interpreting experiments, 

but it also becomes a predictive tool of the Physics and Chemistry of condensed matter 

and material science. 

Electrons have an effective interaction that is different depending on whether they 

have the same spin or not. Since electrons with opposite spin can occupy the same space, 

they have a higher potential energy of interaction on average. Thus all else being equal, 

electrons would want to have the same spin in order to lower the system's potential 

energy. A system with electrons that have the same spin direction is a ferromagnet. In 

general the magnetic structures are described in terms of exchange coupling between the 

nearest neighbours. There is competition between electronic potential energy which favors 

magnetism, and the electronic kinetic energy, which favors a non-magnetic electronic 

structure. As pressure is increased, electrons are pushed close together, and the relative 

potential energy changes between paired and unpaired electrons become less important; 

bands become wider, making the kinetic energy cost smaller, so that in general materials 

become non-magnetic with increasing pressure. 

As temperature is raised the magnetic-moment directions on each atom fluctuates 

more and more rapidly, and at some critical temperature, called the Curie temperature, 

or Tc in ferromagnets, the moments will disorder. In general, there are still magnetic 

moments on the ions above Tc, but they are just disordered in direction. 

Antiferromagnets have moments of opposite direction on alternating sites. It is the 

different hybridization of electronic states that leads to antiferromagnetic rather than 

ferromagnetic order, so that the kinetic energy is lowered. This is sensitive to pressure, 

so some ferromagnets become antiferromagnetic with increasing pressure, as in FCC iron. 
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In a simple ferrimagnet the exchange coupling between the nearest neighbours may 

favour antiparallel alignment, but because neighbouring magnetic sites are not identical 

and their moments will not cancel, leaving the net moment for the solid as a whole. In 

some cases the lowest free energy state has non-collinear spins. 

To gain some basic understanding about the electronic structure and properties of ma- 

terials even very simple models based on empirical tight binding approach which describe 

bonding in terms of the local environment of atoms may be used. These models involve 

a number of uncontrolled approximations, and while they give valuable insight and can 

even predict trends in properties, they contain parameters which must be fitted either 

to experimental data or to the results of some more sophisticated calculations. A lot of 

structural and dynamical properties of solids can be predicted from first principles (ab 

initio) calculations, where the atomic numbers of the constituent atoms and, usually some 

structural informations are the only pieces of empirical input data. Such calculations are 

routinely performed within the framework of density functional theory [Hohenberg and 

Kohn (1964)] in which the complicated many body motion of all electrons is replaced 

by an equivalent but simpler problem of a single electron moving in effective potential. 

The calculated total energies are used to obtain various electronic properties of atoms or 

alloys. 

The band structure methods are based on density functional theory. Methods having 

plane waves as well as tight binding basis are capable to describe most of the ordered 

metallic alloys. The tight binding linear muffin tin orbital method (TB-LMTO) [Ander~n 

and Jepsen (1984)] is one of the widely used method in which the potential in the solid 

is divided into atomic centred close to spherically symmetric part and a flat interstitial 

part and the energy dependent basis set are linearized to derive the energy independent 

basis set in the form of muffin tin orbitals. This method is mostly used within the atomic 

sphere approximation which substitutes the muffin tin spheres with slightly overlapping 

(space-filling) atomic spheres. 

Most of the solids around us are disordered. Deviation from crystallinity seems to be 

the rule rather than exception. Any deviation from a perfectly periodic lattice arrange- 
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ments of atoms leads to disorder. Broadly speaking there are three kinds of disordered 

materials. (a) Compositionally disordered solids like random alloys both in substitutional 

and interstitial. (b) Structurally disordered solids where the underlying lattice has ran- 

dom structural distortions. (c) Magnetic alloys with compositional as well as structural 

disorder like metallic glasses. For study of disordered alloys the above mentioned band 

structure methods based on lattice perodicity are therefore not suitable. Historically the 

single site coherent potential approximation (CPA) [Soven (1967)] was the only method to 

study the physical properties of disordered alloys. In 1973 Mookerjee [Mookerjee (1973)] 

introduced the augmented space (direct product of real and configurational space) the- 

orem which enables us to obtain configuration averaged quantities related to electronic 

structure of disordered alloys. After the introduction of first principles method like tight 

binding linear muffin tin orbital (TB-LMTO) [Andersen and Jepsen (1984)], there have 

been attempts at calculating the electronic structure of disordered alloys from first prin- 

ciples and most of the works are based on the mean field, single site coherent potemial 

approximation (CPA) in the conjunction with the first principles methods [Kudrnovsk~ 

and Drchal (1990)]. Though these CPA based first principles methods give reasonable 

descriptions of many disordered alloy systems, in equally many cases it is expected to fail 

in describing effects involving correlated multisite scattering like clustering, local lattice 

distortions, short range ordering etc. The augmented space recursion (ASR) [Saha et al 

(1994)] method which is based on the augmented space theorem for general configuration 

averaging and recursion done on this extends the theory beyond CPA and is capable of 

handling effects arising from multi-site correlations. Randomness destroys the periodicity 

and for a disordered system the Bloch wave vector no longer remains a good quantum 

number. This is reflected in the smearing out of the van Hove singularities in the densities 

of states. As a result k-space technique demands the introduction of some artificial peri- 

odicity via the mean field theories like CPA. On the other hand the ASR method based on 

real space technique has the power of exploiting the environmental effects. The recursion 

processes define the hierarchy of environments with the relative influence of environments 

explicitly displayed in the local properties one is interested in. Since the successix~ely 

more distant environments have lesser effects on local properties, the recursion proc~.ss 
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is dominated by environments close to local site and finite size cluster calculations with 

terminators appended give reasonably accurate results. 

The knowledge of electronic structure also provides the information of phase stability 

of substitutional alloy systems. It requires accurate approximations of the configurational 

energy on one hand and use of statistical model in the other. Different models have been 

proposed in which the configurational energies are expressed in terms of effective multi- 

site interactions, in particular the effective pair interactions, which amounts to mapping 

the binary alloy problem to an effective Ising model problem. The problem of stability 

analysis thus reduces to obtaining ground states of the three dimensional Ising model 

whose interaction parameters are obtained by first principles electronic structure calcula- 

tions. There are two different approaches of obtaining the effective pair interactions. One 

approach starts with electronic structure calculations of the ordered super-structures of 

the alloy and to invert the total energies to obtain the effective pair interactions. This is 

the Connolly-Williams [Connolly and Williams (1983)] method. An alternative approach 

[Gonis et al (1987)], which we follow, is to start from the disordered alloy and study the 

instability of the disordered solid solution phase with respect to the statistic concentra- 

tion wave perturbations corresponding to the particular superstructure formation. This 

is indicated by the minima in the Fourier transform of the effective pair interaction. 

Most of the work on the phase stability and ordering or segregation in alloys have been 

based on the CPA. The CPA being a single-site approximation as pointed out above cannot 

take into account the effect at a site of its immediate environment which is important in 

the analysis of ordering or segregation in alloys. In an attempt to go beyond the single 

site approximation, de Fontaine and his group followed a different approach of direct 

configurational averaging (DCA) [de Fontaine (1994)] without resorting to any kind of 

single-site approximation. The effective pair and multi-site interactions were calculated 

directly in real space for given configurations and the averaging was done in a brute force 

way by summing over different configurations. Invariably, the number of configurations 

was finite and convergence of the results with increasing number of configurations is yet to 

be available. As an alternative approach the ASR based method is capable of providing the 
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effective pair interaction energies accurately enough. The effective pair interactions within 

this scheme are calculated by coupling the ASR with orbital peeling technique of Burke 

[Burke (1976)] which peels the orbitals (deletes rows and columns of the Hamiltonian) of 

the embedded atoms on the averaged medium to determine the small energy differences 

without involving errors due to subtraction of large numbers. 

The subject of this thesis is the theoretical study of electronic, magnetic structure 

phase stability in substitutional binary alloys. The thesis has been broadly divided into 

two parts. First part  deals with the first principles electronic structure methods which, 

over the years, have proved to be reliable and accurate tools in modeling the materials of 

many kinds. In this part, we have discussed the formalisms used along with their various 

merits, in particular to study alloys which are substitutionally disordered. In the other 

part we have demonstrated the applications to transition metal based alloys, which has 

been the subject of extensive investigations particularly in relation to their fascinating 

electronic, magnetic, ordering and phase stability properties. The reason for choosing 

these kind of alloys is two fold : First, to establish that our formalisms are capable of 

producing the electronic and magnetic properties and phase stability of random alloys in 

an accurate manner both quantitatively and qualitatively, in cases where earlier theories 

based on mean-field techniques had been proved to be inadequate. The second reason for 

the choice of these alloy systems is to study the effect of magnetism on chemical ordering 

of these systems. 

This thesis is organized as follows. In Chapter 2, we first overview the methods for 

addressing ordered as well as disordered alloys. We start with the motivation of doing 

electronic structure calculations from first principles. We briefly state the density func- 

tional theory and make a brief overview of' TB:LMTO band structure method. We state 

the augmented space theorem and describe briefly CPA along with its relation with aug- 

mented space. We describe the limitations of CPA and necessity of doing augmented 

space recursion along with its generalized formulation to take into account the effects 

which can not be tackled by single site mean field methods. In next step, we introduce 

and discuss the orbital peeling technique in conjunction with the augmented space re- 



Chapter 1. Introduction 7 

cursion in TB-LMTO basis to calculate the chemical pair interactions in substitutional 

binary alloys. We also extend this technique to take into account of magnetic effect in 

the chemical pair interaction energies. In this chapter we also present the computational 

details examining some of the effects in electronic structure calculations. This includes 

~he effect of magnetic moments as we vary the irreducible k points in Brillouin Zone mesh 

in using TB-LMTO method. The lattice relaxation effect is checked in the ordered alloys 

using TB-LMTO method and in the disordered counterpart it is checked using augmented 

~-pace recursion taking the relaxed and unrelaxed potential parameters from correspond- 

h~g TB-LMTO calculations as inputs. We also point out the simple procedure for the 

approximate treatment of Madelung potential in the disordered alloys. The convergence 

on the magnetic moments in disordered alloys is also checked with the variation of re- 

cursion steps and number of seed recursion. The convergence of Fermi energy and pair 

interaction energy as a function of recursion steps are also checked. The discussion of 

these computational details shows the reliability of our calculations in subsequent chap- 

ters. The computational aspects of relative stability and ordering are explained at the 

end of this chapter. 

In Chapter 3, we study the magnetic properties of ordered as well as disordered Fe-Pt, 

Co-Pt and Ni-Pt alloys. For ordered alloys we have used the TB-LMTO method and 

studied the effect of different exchange correlation functionals on lattice parameters and 

t h e  magnetic moments of these alloys. In disordered case we have used the augmented 

space recursion and make comparative study with the results obtained using CPA in these 

alloys. The subject of short range ordering and its interrelation with magnetism is one of 

the interesting area of research. In this chapter we study the effect of short range ordering 

and its interrelation with magnetism in these alloys within the first principles generalized 

augmented space recursion method. 

In Chapter 4, we study the phase stability in Ni-Pt alloys. We examine the necessary 

effects like relativity (scalar : mass velocity and Darwin corrections), charge transfer and 

lattice distortion which play important role in the phase stability in the alloys which 

has large size mismatch and contains heavy element as one of the constituents of the 
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alloy. In this study we also focused on the instability temperatures computed using 

pair interaction energies within the mean field statistical model and made comparison of 

instability temperatures obtained using CPA based methods. 

In Chapter 5, we apply the extension of orbital peeling technique in conjunction with 

the augmented space recursion in a TB-LMTO basis to Co3Pt alloy system where we 

encounter the situation that the Curie temperature is higher than the order disorder 

transition temperature. In such cases there should be the effect of magnetism in the or- 

dering and phase stability of the alloy and therefore one needs to incorporate the magnetic 

effect on the calculation of pair interaction energies. We also make a systematic study of 

phase stability in Fe-Pt and Co-Pt alloys. 

In Chapter 6, we study alloy ordering and segregation taking the example of CuAu 

(3d-5d) and CuAg (3d-4d) alloys. We attempt to understand the contrasting properties 

between CuAu and CuAg : CuAu stable and has ordering tendency while that of CuAg 

unstable and has segregation tendency. 

Chapter 7 includes the concluding remarks of our work. 



C h a p t e r  2 

Theoretical  and computational methods 

First principles description of the electronic structure, for the study of physical properties 

of disordered alloys, is a challenging problem. The absence of translational symmetry 

is the main difficulty in construction of a quantitative theory comparable in accuracy 

and efficiency with those for crystalline solids, based on the Bloch theorem and standard 

band structure methods. For the description of physical properties of disordered systems 

one needs to carry out configuration averaging in the first principles basis. One of the 

widely used configuration averaging methods is the mean-field based single-site coherent 

potential approximation (CPA) which overcomes these difficulties by introducing a trans- 

lationally symmetric effective Hamiltonian. However, whenever local environment effects 

become important : like short-ranged ordering, chemical affinity driven local clustering 

or local lattice distortions due to size mismatch between the constituent atoms, we need 

a more general configuration averaging method. The augmented space recursion (ASR) 

is one such general method for configuration averaging developed in our group [Saha et 

al (1994)]. In this chapter we shall illustrate the application of this method and its suit- 

ability in tackling different effects like lattice relaxation, charge transfer along with the 

short-range ordering. Since remarks have often been made about the numerical accuracy 

of the recursion method, we shall examine the convergence properties of various physical 

quantities calculated with the ASR. 

In its early days, most of the work on disordered systems used semi-empirical tight- 

binding Hamiltonians to describe electronic properties. A major step towards constructing 

9 
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first principles tight-binding Hamiltonians began with the tight-binding linear muffin-tin 

orbitals method (TB-LMTO) within the framework of density functional theory proposed 

by Andersen and Jepsen (1984). In the TB-LMTO, the Hamiltonian is characterized by 

a set of potential parameters which are derived self-consistently from a first principles 

theory and are not empirical. For the ASR calculation, potential parameters are initially 

generated for the constituent atoms from a most-localized, TB-LMTO calculation. The 

augmented space Hamiltonian is then generated from it [Mookerjee (1973)] and the re- 

cursion method in the augmented space is employed to calculate the partial density of 

states and charge densities [Haydock et al (!972)]. The charge densities are then used 

to generate the new potential parameters within the local density approximation of the 

density functional theory (LDA). This is then iterated to self-consistency. The flexibility 

in the choice of atomic sphere radii keeping constant average volume in random binary 

alloys makes approximate, yet accurate and consistent treatment of charge transfer effect 

[Kudrnovsk:~ and Drchal (1990)]. 

Since the ASR allows us to go beyond a single site mean field approximation, it is 

suitable for the consideration of randomness in the structure matrices in terms of occu- 

pation probabilities of those sites as well as their local environment. The terminal point 

approximation [Kudrnovsk:~ and Drchal (1990)] assumes that the disorder is dominated 

by the occupation of the two sites at the extremities of the structure matrix. In this 

chapter we briefly revisit the procedure and apply it to the case where there is substantial 

size mismatch between the alloy constituents. 

Short-range ordering plays an important role in the actual determination of either 

ordering or segregation tendency in alloys. It also helps us to understand the interplay 

between magnetism and chemical order. The ASR allows us to introduce short-range 

ordering in a simple manner [Mookerjee and Prasad (1993)]. 

In this chapter we shall also demonstrate the convergence of various physical quantities 

calculated within the ASR. The emphasis on these convergences properties with probable 

errors will illustrate the reliability and suitability of the computational aspects of our 

method. 



2.1 

Theoretical and computational methods 

T h e o r e t i c a l  m e t h o d s  

11 

Within first principles methods the electronic structure is described by a Hamiltonian 

N~ 2 g~ Zre2 1 x~ e 2 ZIZj  
H =  E Pi E E + 2.., + E (2.1) 

2m~ I r i -  RII 2 I r i -  rjl IRI - RjI i=l  R I  i=l i,j R I R j  

The four terms are recognized as the kinetic energy of electrons, the ion-electron in- 
teraction, and the electron-electron repulsion and ion-ion interaction. Within this Hamil- 
tonian the ionic motion is ignored using the essence of Born Oppenheimer approximation 
which allows us to separate ionic motion and electronic motion since ionic mass >> elec- 
tronic mass (m~). The nuclei, therefore, considered as classical particles and their positions 
(RI) can be taken as parameters that appear in the potential of the electronic part of the 

SchrSdinger equation. 

2.1.1 Density functional theory 

Within density functional theory (DFT), the ground state energy of an interacting system 
of electrons in an external potential is written as a functional of the ground state electronic 
density [Hohenberg and Kohn (1964)]. DFT is particularly appealing since it does not 
rely on the knowledge of the complete N-electron wave function but only of the electronic 
density. Although the theory is in principle exact, the energy functional contains an 
unknown quantity, called the exchange-correlation energy, that must be approximated 
in any practical implementation of the method. The most commonly used are the local 
density approximation (LDA) and the generalized gradient approximation (GGA). Below 
we briefly describe the essence of this theory. 

In the Kohn-Sham formulation of density functional theory [Kohn and Sham (1976)], 
the ground state density is written in terms of single-particle orbitals obeying the equa- 
tions in atomic units (h = e = m = 1): 

where 

{ 2 / p(V) d r '+Vxc( [p] ; r )} r162  (2.2) 
- V 2 + Ve~t(r) + Ir - r'----~ 

N 

p ( r )  = I r  2 . ( 2 . 3 )  
i=l 

The electronic density is constructed by summing over the N lowest energy orbitals where 
N is the number of electrons, vext (r) is the external potential. The exchange-correlation 



Theoretical and computational methods 12 

potential vxr ([p] ;r) is the functional derivative of the exchange-correlation energy Exc [p] 
that enters in the expression for the total energy of the system: 

l ~ f  / i f/p(_r)_p(r~) d r E=--~.= r162  dr + p(r) V,xt (r) dr + ~ ] r -  r'[ dr' + Ex, [p]. (2.4) 

The exact functional form of Exc [p] is not known therefore it is necessary to make ap- 
proximations for this term. The local density approximation [Kohn and Sham (1976)] is 
the simplest and most widely used exchange-correlation functional: 

A [p] = f p(r) h A(p(r))dr, (2.5) 

where LDA exc (p) is the exchange-correlation energy per particle of a homogeneous electron 
gas of density p. In order to handle magnetic systems, one needs spin-polarized calcula- 
tions, for which the local spin density approximation (LSDA) has to be invoked instead 
of LDA (yon Barth and Hedin 1971). The fundamental quantity p(r) is then replaced by 
two quantities : spin-up density pT(r) and spin-down density p~(r), which in turn define 
the total charge density p(r) and the spin density a(r) as 

p(r)  = PT( ) + p (r) o (r )  = PT(r) - P (r) 

Accordingly one has to calculate two sets of single-particle wave functions for up-spin 
and down-spin electrons, with the corresponding one-electron eigenvalues from the spin- 
polarized KS equation. L(S)DA in general overestimates the binding energy and underes- 
timates the bond length of weakly bound molecules and solids. In an attempt to improve 
upon L(S)DA, the generalized gradient approximation is used replacing exc[p(r)] by a local 
function of the density and the magnitude of its gradient exc[p(r), [Vp(r)[]. 

E2~ n [p] = / p(r) e~n(p(r), IVp(r)l) (2.6) 

It can be expected that GGA will give better ground-state properties than LDA, since 
GGA was constructed to be a more precise approximation to the true density functional. 

2.1.2 Linear muffin tin orbital method 

In LMTO method, an energy independent basis set is derived from the energy dependent 
basis set in the form of muffin tin orbitals (MTO) [Andersen (1975)]. The set is con- 
structed in such a way it has following characteristics: (a) it is appropriate to the one 
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electron effective potential of the solid. (b) it is a minimal basis set and (c) it is continuous 
and singly differentiable in all space. A muffin tin -potential is spherically symmetric in- 
side non-overlapping spheres surrounding the atoms and constant in between. The inside 
solutions for a MT can be obtained from the numerical solutions of the radial Schr6dinger 
equation 

l(l + 1) ] 
[rCPd(s,r)]"= Vn(r)+ r--- Y -  e rCm(e,r)  (2.7) 

The outside solutions for constant potential can be represented as linear combination of 
the spherical Bessel j~ (a2, r) (regular at origin) and Neumann functions nl(a 2, r) (regular 
at  infinity, divergent at the origin). The muffin tin orbitals are written as 

{ CR,(e, rR) + Pm(~,a 2) jt(a2, rn), rR < s R 
XRL(e, n2,rR) = YL(rR) X n,(a2, rR), rR > sR (2.s) 

Here L is used as a combined index for {Ira} and rR refers to Ir -- R I. ~2 = ~ _ Vo can 
be interpreted as the "kinetic energy in the interstitial region". In this relation we have 
added PPd(e, ~2) jl(a2,rR) to the partial wave. This makes the tail (in the interstitial) 
independent of the muffin-tin potential within the muffin-tin sphere. 

The tail  nL(~r 2, rR) can be expanded about other site as : 

nL(tc2,rR,) = ~ ' jL , (a2 ,  rR,) SR, L,,RL(e; 2) (2.9) 
L I 

Here the expansion coefficients S(a 2) is the Hermitian KKR structure matrix. The 
MTO-tails from neighboring sites (R ~) cancel the "unphysical" term Ppa(e, a2)jL(a2,rR) 
of the MTO at the site R which directly leads to the KKR set of homogeneous linear 

equations 

y~[PR, v(e,e;2)(SR, Re~L,L--SR, L,,RL(~2)] CRL(r ) = 0 ,  fo reachR ' ,L ' .  (2.10) 
R L  

These have solutions %L for those energies where 

det I p(~, ~2) _ S(~2)]= 0 (2.11) 

This is the KKR secular equation with separate potential and structure dependent 
parts. However, the structure constants S(~ 2) are strongly energy dependent and are 
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long ranged in real space. For close-packed solids and low energies, one often uses the 
atomic-spheres approximation (ASA), which, substitutes the MT-spheres with slightly 
overlapping (space-filling) atomic spheres and sets ~2 __ 0, so that  the envelope functions 
become simple multipole potentials r-Z-lYzm(#). In the ASA, the ingredients to the band 
structure are potential parameters,  obtained from the radial functions at the sphere radii, 
SR and a structure matrix S. In open structures, also the potentials in the voids are 
taken to be spherically symmetric. It has been argued that if the overlap between the 
Wigner-Seitz spheres is less than 20% then ASA is good approximation and gives reliable 
results. 

Invoking ASA means that  instead of integrating the atomic potential out as far as 
the MT sphere, we integrate out a bit more up to the WS sphere. In this process we 
(apparently) include the region of flat potential. Nevertheless, it is possible to calculate the 
exact difference between the integrals of the interstitial functions over the WS polyhedron 
and the sphere. This is called the combined correction (CC) term. 

The long range of the envelopes with ~2 = 0 can be got rid of by screening with 
multipoles on the neighboring sites. This has made it possible to generate the structure 
matrix in real space. The screened structure matrix S ~ can be obtained from the canonical 
structure matr ix S O by the unitarity transformation : 

so_ s0( _ Qo s0)-  

The diagonal screening matr ix Qa which defines the above transformation is unique 
for all closely packed structures, and yields the most localized structure constant with 
exponential decay rather than the usual power law behaviour. 

In the most tight-binding representation, a LMTO basis orbital of collective angular 
momenta index L = (lm) centred at site R, is given in the ASA, by the expression : 

XRL(rR) CRL(ra) + ~ "a a (2.12) = CR, L, (rR,) hR'L',RL 
R I L  ' 

The function CRL is the solution of the wave-equation inside the spheres of radius SR at 
R for some reference energy EvRL and is normalized within the sphere. The potential 
inside the sphere is calculated using the local density functional approximation (LDA). 
The radial part  of the "~ ~)RL is related to the energy derivative of r at the reference 
energy : 

r = CRL(rR) + 

The quanti ty o ~ (r I "~ = CR~) is the overlap. The expansion coefficients ha are given 
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by 

hRL,R,L, = (C~L -- EvRL) 5RR, SLL, + V ~RL"RL,R'L'V ~RL (2.13) 

Where C~L and A~L are the potential parameters to be obtained from the potential 
function at the reference energy. E~,RL. S~L,R,L, is the screened structure matrix whose 
elements in the most tight-binding representation are essentially zero beyond the second 
shell of neighbours in all closed packed structures. 

The summation over the composite angular momentum index suggest that the TB- 
LMTO orbital do not preserve pure L character. Further r and r are trun- 
cated outside the Wigner-Seitz spheres and the expansion coefficients vanish beyond the 
second shell of neighbours in all closed packed structures, so that all TB-LMTO orbitals 
are short ranged, resulting in a sparse Hamiltonian in this representation. This is ideal 
for real space calculations based on the recursion method. The Hamiltonian and overlap 
matrices for this basis are given by (with neglect of small terms) : 

H = h + hoh + ( I  + ho)E~(I  + ho) (2.14) 

o = (XIX) = (I  + ho)( I  + ho) (2.15) 

In these equations the summation indices RL, are suppressed for convenience. The 
matrix o is diagonal in RL representation and its value is determined by the logarith- 
mic derivative of the function r at the gphere boundary. The L5wdin orthonormalized 
Hamiltonian in the ASA is given by : 

H (2) = E~, + h - hoh + hohoh . . . .  

and the first order Hamiltonian is given by 

(2.16) 

H (I) = E~ + h (2.17) 

The parameter o determines the degree of non-orthogonality of the basis. Again o -I 

has the dimension of energy and provides a measure of the energy window about the 

reference energy Ev for which the density of states obtained with H (1) are reliable. 

In order to perform self-consistent calculation in ASA, one needs the electron density 

p (r) 

1 
Pa(r) = ~ E [m~)r 2 + 2m~)r162 + m(2)ICa,, m (r) 2 + Cm(r)r (2.18) 

l 
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where m~) represents energy moments 

m~ ) = f E r d E  gR,(e)(e -- E~,a,)q 

and density matrix Npj(e) represents projected density of states 
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(2.19) 

Nm(r 
J 

= f~/(27r) a f dk 5[~ - 6j(k)] ~ Ic L, (k)l: 

The zeroth moment m (~ determines the number of/-electrons, and m (1) and m ~) 
determine the radial redistribution of the/-charge. Here PR (r) is only the valence electron 
charge density, to which one has to add the spherically symmetric core electron (atomic) 
contribution, in order to obtain the total spheridized electron density. 

In each iteration, after obtaining the charge density and the potential, one has to 
solve the radial Schr5dinger (or Dirac-Pauli) equation again to obtain the basic quantities 
CRz, err, CR~ and the potential parameters CR~ , A~, 3% and PR~; and this cycle is to be 
repeated. 

It is essential to mix input and output densities in an appropriate proportion to obtain 
a new input density. The simplest procedure is linear mixing [Dederichs and Zeller (1983)] 

= Cp t + (1 = + 

where ~ is the mixing parameter (0 < ~ < 1) that moderates the large charge oscil- 
lations and F[p] is the Kohn-Sham functional. Several other iteration schemes like 'An- 
derson mixing' [Anderson (1964), Hamann (1979)], 'Broyden mixing' [Broyden (1965), 
Johnson (1988)] have been developed. 

In standard LMTO calculation, one solves either the non-relativistic SchrSdinger equa- 
tion or the scalar-relativistic (Dirac-Pauli) equation; in the latter, one omits the spin-orbit 
coupling term (thus keeping spin as a good quantum number), but retaining all other rel- 
ativistic kinematic effects [Koelling and Harmon (1977)]. 

While performing density functional calculations one needs to solve not only SchrSdinger 
equation but also Poisson equation, and with the ASA method this involves approximat- 
ing not only the potential but also the charge density. Thus the ASA total energy per 
unit cell can be written as 
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E = T + ~-~'UR + U M (2.20) 
R 

First term in right hand side denotes kinetic energy of valance electrons. The second term 
is intra-sphere interaction energy between electrons and ion in that sphere and the third 
term is inter-sphere electrostatic energy (Madelung) term. 

2.1.3 Configuration averaging in disordered systems 

The concept of configuration averaging is central to the study of the disordered systems. 
The potentials which describe the disordered solids are characterized by random param- 
eters. A particular realization of these parameters in a given sample is the configuration 
of the system. One needs to take the average over all possible configuration to study 
the physical properties of solids. The averaging over configurations is carried out with 
the idea of spatial ergodicity. Since the system is microscopically large one can partition 
it into subsystems each of which resembles a configuration of the system. The average 
over the subsystem is the same as the average over all configurations. There are several 
approaches for configuration averaging in disordered systems. 

Rigid band approximation (RBA) 

In the rigid band approximation, the shape of the density of states is taken to be same 
throughout the concentration range with only shift in the position of the Fermi energy 
due to change in the filling. This gives crude picture of the effect of change in electron to 

atom ratio on alloying, 

The virtual crystal approximation (VCA) 

In the virtual crystal approximation, the actual random alloy potential is replaced by an 

average periodic potential which is taken as the concentration weighted arithmetic mean 

of the constituent's potential. The effective Hamiltonian has no randomness and this 

approximation clearly misses out any scattering caused by random potential fluctuations 

about the average. The approximation is reasonable only if the random variation of the 

diagonal terms is very small. This serves as the starting point of more sophisticated 

iterative self consistent methods which are capable of capturing features characteriz~tics 

of the disorder. 
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The Coherent Potential Approximation 

The idea of a single site mean field approximation in a disordered system goes back as 
early as Raleigh. Landau and Lifshitz (1975) discussed about a mean field approxima- 
tion in a problem of dielectric behaviour of spherical globules of one dielectric randomly 
dispersed in another. Soven (1967) applied almost similar ideas to the problem of motion 
of electrons in a random potential. He called this approximation the single-site coherent 
potential approximation or the CPA. The basic underlying idea is to obtain an effective 
Hami l ton ian  H eft which is lattice translationally symmetric and the representations of 

its Green function or resolvent Ge"(z) (zI  He") -1 = - are good approximations of the 
f 

averaged Green function or resolvent of the random Hamiltonian. In general, such an 
effective "Hamiltonian" is both complex and energy dependent and hence not hermitian. 

Within a coherent potential approximation, for a tight binding random Hamiltonian 
of the form 

H = EeRpa  + E E V R . , t . . ,  (2.21) 
R R 

popularly known as Anderson model is given by 

He" : E E ( z )  PR + EEVRR'tRR' 
R R R' 

Here PR -- [R}(R[ and tRR, = IR)(R'I are projection and transfer operators on the 
space spanned by the tight-binding basis {JR}} and 6R are random alloy potential. 

By definition, 

<< G(z) >> = ae"(z) 

The effective diagonal term E(z) may be complex but lattice translationally symmet- 
r ic ,  i.e. independent of the label i. We have assumed that the off-diagonal terms VRR, are 
unchanged. If we write E(z) =<< e >> +E(z), the correction to the VCA, E(z), is called 
the self-energy. Within the CPA the self-energies are totally diagonal. 

The effective coherent potential E(z) is unknown. To estimate it, let us consider the 
effective Hamiltonian and replace the effective potential E(z) at any one site, say R, by 
the exact random potential eR. The Hamiltonian of this system is like that of a single 
random impurity 

H (R) = H e" + (eR--E(z))7~R -= H e" + h 
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Simple algebra gives, 

G(~(z)  = 1 - ( e R -  E(z))GeRffR 

The coherent potential approximation chooses that E(z)  which satisfies : 

That  is, 

<< c(R)(z) >>R = r  = << C(=) >> 

C R -  E(z) 
= o 

Let us consider the case where the eR has a binary distribution, taking the values EA 

and eB with probabilities x and y respectively. The above equation then reduces to 

xv(~A- eB) ~ << eRR(z) >> (2.22) 
E(z) = 1 - ( g - E ( z ) )  <<GRR(Z)>> 

where g = yeA + X~B. 

This is a self-consistent equation for the CPA self-energy. Miiller-Hartmann (1973) 

has shown that  the above implicit equation always has a solution with the following 
properties : 

(i) E(z) has singularities only on the real z axis. 

(ii) It is analytic everywhere outside the real z axis. The imaginary part of E(z) is 

always negative or zero in the upper half z-plane and always positive or zero in the 
lower half. 

(iii) In case the spectrum of << G(z) >> is bounded, E(z) --, 0 as z --, +oo along the 
real z axis. 

The averaged Green function is said to be herglotz if the self-energy satisfies these prop- 
erties. This ensures that  the density of states is always positive or zero and the spectrum 

is always real. Green functions of hermitian Hamiltonians are always herglotz. However, 

effective Hamiltonians are not necessarily hermitian and we must ensure that  the3 T yield 
herglotz Green functions to be physically relevant approximations. The CPA is a good 
approximation in this sense. Moreover, the self-energy has the correct form in the  two 

solvable limits : the impurity limit x ~ 0 and the weak scattering limit 6A ~ 6B. We note 
that  the self-energy is indeed diagonal. This yields the result << G(z) >> = GYCn(z--E), 
which indicates that  the CPA Green function is a mapping of the VCA one via the energy 
dependent mapping z --+ z - E(z). 
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2.1.4 The augmented space theorem 

Mathematical description of the configuration space 

One of the main conceptual hurdles in understanding the augmented space theorem has 

been the visualization of the configuration space of a set of random variables. Yet the 

idea is quite common in other fields. A very simple, yet essentially non trivial example 
is that  of the Ising model. Since most readers seem comfortable enough with this model, 

we shall illustrate some of the basic ideas behind our description with it. 

The model consists of a set of spins {an} arranged on a discrete lattice labeled by R. 

Each spin a n can have two possible states or configurations which we can denote as [ TR> 
and [ SR>. The collection of all linear combinations of these two states:  {a[ TR) + b[ ~R> } 

is called the configuration space of a R . It is of rank two and is spanned by the states 
[ TR> and [ ~R>. Let us call this space r 

The set of, say, N spins then have 2 N possible configurations each of which can be 

written as a sequence of m up-states and (N-m) down-states. The ordering of this se- 
quence is crucial, since different orderings correspond to different configurations. The 

number (N-m) is defined as the cardinality of the configuration and the sequence {g} 

of sites {Pul,R/2,. . .  Puk...PuN_,~} where the down-states are called the cardinality se- 
quence of the configuration. For example, take a particular configuration of 5 spins : 

[ Tl~213T415). It has cardinality 3 and a cardinality sequence {2,3,5}. Another config- 

uration [ .~lT2~3~4T5 > also has a cardinality 3, but its cardinality sequence is {1,3,4}. 
These two configurations are distinct from each other. 

Note that  the cardinality sequence uniquely describes the configuration and is a very 
convenient way of labeling the different configurations [{Ck}> ( where k--1,2.. .  2 N) of the 
set of N spins. The configuration space @ is of rank 2 N and can be written as a direct 

product of the configuration spaces of the individual spins. 

r = 1 ] | 1 6 2  
R 

The generalization of these ideas when the spins can have n > 2 states is quite straight- 

forward. The configurations of an individual spin can be labeled as ]kR>, where kR----1,2,... 
n. The rank of r is now n. The set of N spins has n N configurations. The cardinality 

of the configuration of an individual spin is defined as the particular kR and the cardi- 
nality sequence uniquely describes a configuration of the set of N spins is the sequence 

{kl, k2,.., kN}. 
If we now translate our ideas from spins aR to the random variables r of the Anderson 

model, we can immediately visualize the configuration space of the Hamiltonian variables 
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{~R}. When these terms have a binary distribution, their configuration space is isomorphic 
to the one for a collection of Ising spins. 

Let us now assume that the variables {sR} are independently distributed and the 
probability densities are given by P(~R). We shall take into account only those probability 
densities which have finite moments to all orders. Physically relevant densities almost all 

fall in this category. Since the probability densities are positive definite functions, we can 
always write them as spectral densities of a positive definite operator as follows : 

p(eR) = ( - - l / r )  9 m  (Ol((~ + ~0)z - M R ) - l l 0 )  
= (-1/7r) ~m g(eR + z0) (2.23) 

If ~R has a binary distribution, taking the values 0 and 1 with probabilities x and 
y = l - x ,  then a representation of M is 

x v ~ )  
v ~  y 

We may interpret this in terms of the configuration space CR introduced earlier. The 

configuration space is spanned by the states [0) and [1), which are eigenstates of MR 
with eigenvalues 0 and 1. This is rather similar to the description in quantum mechanics, 
where an observable taking a random set of values is associated with an operator whose 

eigenvalues are the possible values observed and the states of the system in which the 

observable takes a particular value corresponds to the related eigenstate. The operator 

MR in the configuration space CR will be associated with the random variable r The 
representation of MR shown above is in a different basis : 

I0> = (v~  Io> + v~  I1>) 
I{R}) = (v~  Io) - v ~  I1)) 

The reason for choosing this particular basis will become clear later. The state IO) will 
be called the average state of the system. 

For a general probability distribution, we may always find the representation of the 
operator MR in a similar basis by first expanding the probability density as a continued 
fraction. 
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1 
g(r = -(1/Tr) b2 (2.24) 

eR -- a0 -- b22 
~R -- al -- - -  

Here P(~R) = ~m g(~R). Since it is a positive definite function with finite moments 

to all orders, P(~R) can be expanded as a convergent continued fraction�9 The required 

representation of the matrix Mi is given by 

a0 bl 0 0 � 9 1 4 9 1 4 9  
bl al b2 0 �9149 
0 b2 a2 b3 . . .  

. . .  . � 9  . .  �9 . . .  . . .  

The average state is defined by [0) = ~k V/~I k) where k are the random values 
taken by eR with probabilities xk. The other members of the countable basis In>, in 
which the above representation of MR is given, may be obtained recursively from the 
average state through �9 

Io> 
b~ll> 
b.ln> 

= I0> 

= M R I O )  - aolO) 

= M R I n  - i )  - a . - ~ I n  - 1> - b . - ~ I n  - 2) 

The close relation of the above procedure to the recursion, method described in the 
previous chapter should be noted. This is not surprising, since the projected density 
of states and the probability density are both positive definite and integrable functions. 
Convergence of the continued fraction further requires finite moments to all orders in both 
the cases. 

The augmented space theorem 

Let us now consider the average of a well-behaved function f(eR) of eR. By definition �9 

f :(r (2.25) << f ( e R ) >:> = 

Equation (2.25) may be rewritten as : 

<< f(eR) >> = / f(z) g(z) dz 
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The  integral is taken over a closed contour enclosing the singularities of g(z) but not any 

of f(z). We assume here that  f(z) is well behaved, in the sense that  it has no singularities 
in the neighbourhood of a singularity of g(z). 

We now expand the function g(z) in the basis of its eigenstates {l#)) of Mi. These 
may be either discrete or continuous. This expansion can be written as a Stielje's integral 
in terms of the spectral density function p(#) of Mi 

<< f(~R) )) = [ / , ( z ) ( z - , ) - , ]  

= If ap(.)I.> s(.)<.1] Io> 

The second line requires the function to be well behaved at infinity. The expression in 

brackets on the right side of the bot tom equation is, by definition, the operator f(MR). It 

is the same functional of MR asf(r was of r For example, if f(r is r then f(MR) 
is M ~ .  This yields the central equation of the augmented space theorem : 

f(6R) ~:> = <OIf(Mn)lO) (2.26) 

The result is significant, since we have reduced the calculation of averages to a par- 
ticular matrix element of an operator in the configuration space of the variable. Since 

we have applied the theorem to a single variable alone, the power of the above theorem 
is not apparent. Let us now go back to the Anderson model where we have a set of 

random variables {~i) which we have assumed to be independently distributed. The joint 

probability distribution is given by : 

P(eRI,eR2,...eR~...) = 1-IP(r (2.27) 
i 

The generalization of the above theorem to averages of functions of the set of random 

variables is straightforward. 

<< f({eR}) )> = <0[f({MR})I0) (2.28) 

All operators in the full configuration space �9 will be denoted by tilde variables. The 

operators MR are built up from the operators MR as : 

MR = I |  |  |  @I |  

This is the augmented space theorem (Mookerjee (1973)). 

(2.29) 
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If we wish to carry out the configuration averaging of, say, the Green function element 

G R(z) = <RI ( z I  - H({eR,}))  -1 IR> 

The theorem leads to : 

<< GRR(z) >> = 

where, 

< R |  H({MR,}))-IlR| (2.30) 

R R R' 

The power of the theorem now becomes apparent. The average is seen to be a particular 

matrix element of the Green function of an augmented Hamiltonian. This is constructed 
out of the original random Hamiltonian by replacing the random variables by the corre- 
sponding configuration space operators built out of their probability distributions. This 

augmented Hamiltonian is an operator in the augmented space �9 -- 7-I @ �9 where 7-I 

is the space spanned by the tight binding basis and �9 the full configuration space. The 
result is exact. Approximations can now be introduced in the actual calculation of this 

matrix element in a controlled manner. The augmented Hamiltonian has no randomness 

in it and therefore various techniques available for the calculation of the Green functions 

for non-random systems may be resorted to. In particular we shall show that the recur- 

sion method is ideally suited for obtaining matrix elements in augmented space. Since 
configuration averaging is an intrinsically difficult problem, we must pay the price for the 

above simplification. This comes in the shape of the enormous rank of the augmented 

space. For some time it was thought that  recursion on the full augmented space was not a 
feasible proposition. However, we shall describe later that, if randomness is homogeneous 

in the sense that  P(r is independent,of the label R, then the augmented space has a large 

number of local point group and lattice translational symmetries. These can be utilized 

to reduce vastly the rank of the effective space on which the recursion can be carried out. 

Recursion on augmented space can be done with ease, even on desktop computers. 

The coherent potential approximation within the augmented space formalism 

The coherent potential approximation can be derived from the augmented space Hamil- 

tonian using the mean field ideas of Soven. Let us partition the augmented space of 

an Anderson model into the subspace which includes a particular site, say R and its 

configurations r For a binary distribution of the diagonal elements this space is of 
rank two and is spanned by [R | {0}} and IR | {R}>. We project the remainder part 
of (I) onto the subspace spanned by configurations of cardinality zero and replace the 
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Hamil tonian in the subspace by a lattice translationally symmetric effective Hamilto- 

n ian : ~]a,r E(z)7:'R, + ~R,, ~R, VR'R"q'R'R". This is equivalent to replacing the entire 
Hamiltonian except tha t  of the site R by the effective Hamiltonian, as was done in the 
derivation of the usual CPA. The Hamiltonian becomes : 

W 
V 
V 
V 

w V V v . . . ~  

g V' V V . . .  
V E(z) V V ... 
y y E(z) Y . . .  

V Y Y E(z) . . .  

" * ~  
~  . ~  ~  , . ~  

w h e r e W  = xy(eA--es)  2. 

We shall now use the partition or downfolding theorem, which states that  if we parti- 

t ion a space into two subspaces ,4 and B and consequently the Hamiltonian as 

Ha 

HBa 

then the resolvent in the subspace A is, 

7 ~ A ( z I -  H)-l"pA 

HB 

= ~ ( z I -  / ~ ) - 1 ~  

where 

[-I = HA + HAm PB(z I -  HB)-IT'B HBA 

If ,4 is the subspace spanned by ]i | {0}), then by the augmented space theorem the 
Green function projected on this subspaee is the configuration averaged Green function. 

Wi th  this interpretation the above two equations become : 

<<Gp~(z) >> = ( R |  - ~ ) - l l R |  

and 

~- CR{~}~ z ~(E) H = ~ + WG(R{R}),(R,{R}) ( ) W  = ~ + 
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We note that in order to calculate the Green function on the right hand side of the 
above equation, we have to consider the full effective CPA Hamiltonian and replace the 
diagonal matrix element E(z) at the site labeled by R by g. This is the familiar single 
impurity problem and the relevant Green function can be written down immediately 

G(R(0} )  , ,  << G(z) >> 
(a{a})'(a{a})kz) = ( 1 -  (g--Y](z))) << G(z) >> 

Substituting this in the expression for/~/we get 

xy(SA -- eS) 2 << GRR(Z) >> 
z ( z )  = 

1 - ( g -  << GRR(z) >> 

This is exactly the expression for the CPA self-energy derived earlier. 

Properties and limitations of CPA 

The CPA preserves the analytical properties of the Green function for any range of al- 
loy parameters (i.e. for any compositional concentration and any scattering strength of 
constituents atoms). In particular, the CPA yields the coherent potential functions and 
Green functions, total as well as conditionally averaged, which are analytic everywhere 
in the complex energy plane except for poles and branch cuts along the real axis inside 
the host and impurity bands. This generally means that the CPA yields analytic, phys- 
ically meaningful results, in particular non-negative densities of states or Bloch spectral 
functions. 

The CPA becomes exact in three important limiting cases, namely in the low con- 
centration limit, in the weak scattering limit, and in the so-called split-band limit (the 
separation of constituents bands is large as compared to their bandwidths). The last case 
corresponds to alloys of transition metals with simple metals or transition-metal alloys 
with vacancies. The CPA also provides a good interpolation procedure between these 
limits, and it is more accurate than any other single-site theory. 

Despite the lack of including local environmental fluctuations and cluster effects, the 
CPA generally gives reliable concentration dependent trends for ground-state physical 
quantities like the local density of states, charge densities, magnetization densities, total 
energies, lattice constants, and related quantities. Generally, the accuracy of the CPA de- 
creases with decreasing dimensionality of the translational invariance, or, more chemically 
speaking, with decreasing nearest-neighbor coordination. In particular, cluster effects in- 
fluence physical quantities more in two-dimensional alloys than in their three-dimensional 
counterparts. 
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The essence of an application of the CPA in the framework of the LMTO formalism 
consists in two steps: first, the configurational average of the auxiliary Green function of 
the system in a non-random LMTO representation is performed and second, the trans- 
formation to the physical, orthogonal LMT0 representation is performed in order to ob- 
tain the corresponding site-diagonal and site non-diagonal blocks of the configurationally 
averaged physical Green function matrix, from which all quantities of interest can be 
determined. 

As it is well known, a single-site, mean-field theory fails to take into account statistical 
fluctuations with respect to the chemical composition of an alloy. Short-range order effects 
can significantly influence certain physical properties of alloys such as the formation of 
magnetic moments or the localization of states in disordered systems. Also charge transfer 
effects in alloys cannot be fully described within a single-site theory. 

There have been many attempts to develop a cluster generalization of the CPA but 
most of them failed because of lacking analytical properties of the resulting configura- 
tionally averaged Green function. The traveling cluster approximation and the augmented- 
space recursion method seem to provide an improvement of the CPA while preserving its 

analytical properties. 

2.2 Recurs ion  m e t h o d  

The local environment approach in the electronic structure of solids require an alternative 

to band theory for solving the Schr6dinger equation. When the electrons interact strongly 

within the atom the band theory picture breaks down and the properties essentially 

depend on only the first few shells of neighbour of each atom. The d- electrons of the 

transition metals are prime examples of this regime. While the band theory is still a valid 

formal solution to the SchrSdinger equation, the physics is better understood by means of 

solution that explicitly accounts for the role of local environment. The recursion method 

introduced by Haydock et al (1972) is a lucid approach in this direction. It expresses the 

Hamiltonian in a form that couples an atom to its first neighbour, then through them to 

its distant neighbours and so on. 

Mathematically, a new orthonormal basis set { lun}} in which the Hamiltonian is tridi- 

agonal is constructed by a three term recurrence relation. 

~-ZlUn) .= anlUn} -~ bn+llUn+l} n L- bnl~n_l} 
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The  recursion coefficients an and b~ are generated by 

an = <u l[tlu > 

bn = (u,~-ll.[-Ilun) 

The configuration averaged Green function then can be written as a continued fraction 

<< GRL,RL(Z) >> = 

Z - -  a0 - -  

Z - -  a l  - -  

"Oo 

z - aN -- b2y+lT(z )  

For an infinitely large system the continued fraction does not terminate at any finite 

step. The continued fraction approach is meaningful only if we can estimate what its 

asymptotic part would be from a set of initial coefficients. This asymptotic part is called 

t h e  t e r m i n a t o r .  The theory of convergent continued fractions indicates that  the asymp- 

totic part determines the essential singularities of the Green function, i.e. the band edges 
and the band weights. The band edges can be determined, first crudely, from a few initial 

continued fraction coefficients and then refined by noting how they converge as we include 

a few more coefficients. Once the band edges emin and emax and the band weight w are 

estimated, the model herglotz function is generated as : 

The continued fraction coefficients which yield F(z) are 

an = (e,~x + emi~)/2 for all n 

b~ = ( e , ~ x  - e m i ~ ) / 4  for all n 

Luchini and Nex (1987) suggested that  rather than butt-joining of the terminator 

coefficients to the first nl exactly calculated coefficients, we splice them smoothly as 

follows: 
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an n < n l  

an = 1/2 { ( I  - sin{5(n + (/))}an + (1 + sin{5(n + r  nl < n < n2 
^ 

an n2 < n 

}n< x 
bn = i / 2  ( l - s i n { 5 ( n + r  + ( l + s i n { 5 ( n + r  nl < n < n 2  

^ 

bn n2 < n 

where ~ = l r / (n2-nl)  and r -----(nl+n2)/2. 

We now proceed to obta in  run  two further recursions. The first one obtains two sets 

of o r thogona l  polynomials  cor responding  to the three  t e rm recursion : 

Pn+l(Z) = ( z - a . ) P n ( z )  - b~Pn-l(Z) 

Qn+l(z)  = ( z - a n ) Q n ( z )  - b~Qn_l(Z) 

where Pl (z)  = 0 = Qo and  Po = 1 = Q-1. 

The  second one, s tar ts  wi th  a s tate  10 > = F(z) and obtains a set of coefficients 

{'In, 5n} f r o m :  

In+Z> = (Z  - -  V n ) l n >  - -  a ~ l n  - -  1> 

where  t he  inner p roduc t  is defined by a union of Gauss-Chebyshev quadra tu re  : 

wi th  

<Zig> -- ~ J ( ~ , ) g ( ~ d  
i '  

wi -- sin2tg~ 
n + l  

a, + (I - cosa,)(emo. - era,.)/2 
i7~ 

t9 i -- 
n + l  
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From these continued fraction coefficients, exactly as above, we generate two sets of 

orthogonal polynomials 

P +i(z) = - 

= - 

The terminator is then 

T(z) = 52 S " 2 - 2 ( z ) -  F(z)P~2-~(z) 
n2-1 [Sn2-a(Z)- F(z)P~2-2(z)] 

(2.31) 

Since F(z) is a herglotz function and P~(z) and S~(z) are polynomials, the above 
equation shows tha t  the terminator T(z) is also herglotz. The Green function is then 
given by 

G(z) = Qn2-2(z) - b~2_lT(z)Q,~2-a(Z) (2.32) 
P~2_I (z) - b~2T(z)P,~2_2(z ) 

There is an extensive literature on the construction of terminators (Luchini and Nex 
(1987)). We refer the reader to these for further mathematical details. All terminators are 
herglotz and require no further input other than the first nl continued fraction coefficients. 

2.3 A u g m e n t e d  space recursion 

We shall propose a different path to implement the incorporation of the effects of environ- 

ment fluctuation in disordered system. We wish to apply the recursion method, described 

by Haydock in the previous section directly on the augmented space without carrying out 

any mean-field like approximations. We shall describe the method in a realistic model for 

binary alloys. 

2.3.1 The Hamiltonian in augmented space 

The starting point for the augmented space recursion is the most localized, sparse, tight- 

binding Hamiltonian, derived systematically from the LMTO-ASA theory and generalized 

to substitutionally disordered random binary alloys : 
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^ s 1 6 2  s  
H~,R,L, = C.L,fRR, SLL, + '--'.L~'.L,.'L'"-'.'L' 

C'.L = C A n .  + CgL(1 -- n . )  
ZX~/2 A 1/2 RL = ( A R L )  nR"[- ( A B L ) I / 2 ( 1  -- ?~R) (2.33) 

Here R labels the lattice sites and L=(g m) are the orbital indices (for transition metals 
e <2), c ~ ,  c ~  and ns zx. , RL are the potential parameters of the constituents A and B 
of the alloy, nR are the local site occupation variables which randomly take values I and 
0 according to whether the site is occupied by an A atom or not. From the discussion in 
section 4, it is clear that the Hamiltonian in augmented space/~ consists of replacing the 
local site occupation variables {n.} by {MR}, and is given by:  

= ~ ( c ; j  + ~C.,M~) | ; ,  + . . .  
RL 

+ Z Z: ((<,~)~/~r + ~<,~, .~)  s~,.,~,~, ((A~,.)I/~ + ~<,~,~,~,) | ~-~, 
RL R'L' 

where, 

~c.L = (c~L - c s  
~ , , .  = ( ( ~ S ' -  (~gL) 1/') 

Other parameters have their usual meaning and ] is the identity operator defined in 
the augmented space,/tT/R is given by: 

~ "  = x 7)o + y 7)I + v ~  (~ol + 710) (2.34) 

7 )o and T~ ~ are projection and transfer operators in the augmented space, where each 
site R is characterized by two states labeled 0 and 1 , which may be identified with the 
up and down states of an Ising system . The configuration states are stored extremely 
efficiently in bits of words and the algebra of the Hamiltonian in the configuration space 
mirrors the multi-spin coding techniques used in numerical works with the Ising model. 

The augmented Hamiltonian is an operator in a much enlarged space (I) -- 7-/| [I r  
(the augmented space), where 7-/is the Hilbert space spanned by the countable basis set 
{IR> } (the real space). The enlarged Hamiltonian does not involve any random variables 
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but incorporates within itself the full information about the random occupation variables. 
If we substitute for MR, then with the aid of little algebra we can show that the augmented 
space Hamiltonian contains operators of the following types : 

(a) Pn @ T and TRR' | I. The.se operators acting on a vector in the augmented space 
changes only the real space label, but keeps the configuration part unchanged. 

(b) Pn | "/ol, T'n @ ~R ), "/nn, | ,/ol and Tnn, | 7-o,1. These operators acting on an 
augmented space vector may or may not change the real space label. In addition, 
they may also change the configuration at the site R or R ~. This resembles a single 
spin-flip ]sing operator in configuration space. 

(c) PR | ,/ol | To,1 and "/RR' | "/01 | 7"o,1. These operators may change the real space 

label, as well as the configuration either at R or R t or both. This resembles a double 
spin flip Ising operator in the configuration space. 

A basis I m) in the Hilbert space 7-I is represented by a column vector Cm with zeros 
everywhere except at the m-th position. The inner products are defined as 

= c c,, 

We may represent this basis by a collection of binary words ( strings of O's and l's) . 
As described earlier, the number of l 's  define the cardinality of the basis and the sequence 
of positions at which we have l 's  { C } called the cardinality sequence labels the basis 

Thus a binary sequence B[{ C}] is a representation of the member of the basis in the 
configuration space. The inner product between the basis members is then 

(B[{e}], B[{e'}]) = 5({C}, {e'}) 

A careful examination of the operations (a)-(c) defined on the configuration space, 
reveals that  these operations change the cardinality and the cardinality sequence. Since 
the operations are defined on the bits of words, one can easily employ the logical functions 
in a computer, to define these operations. 
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Symmetry reduction of the augmented space rank 

V~:e note that  the recursion basis lu,~) is generated from the starting state lu0) by repeated 
application of the Hamiltonian. If the starting state belongs to an irreducible subspace 
of 7 / then  all subsequent recursion generated states will belong to the same irreducible 
subspace. PhFsically we may understand this as follows : the recursion states lu~/carry 
information of distant environment of the starting state. For example, lul), which, apart 
from the orthogonalization subtractions, is essentially Hluol , is a combination of states 
in the nearest shell with which lu0/ couple via the Hamiltonian. Similarly, lun) is a 
combination of n-th neighbour shell with which lu0) is coupled via the Hamiltonian. If 
is a point group symmetry of the Hamiltonian, then all n-th neighbour shell states which 
are related to one another through the symmetry operator must have equal coupling to 
lUo). Hence, it is useful to consider among the n-th neighbour shell states of which lug) 
is a linear combination, only those belonging to the irreducible subspace and redefine the 
Hamiltonian operation. 

As an example, take a nearest neighbour s-state Anderson model on a square lattice. 
The starting state I(00)) belongs to the one dimensional representation of the square lattice 
point group. This state then couples with linear combinations of states on neighbour shells 
which are symmetric under square rotations : 

I(Om)} = (l(Om)) + I(mO)) + + 

l(11)} = ( I ( 1 1 ) ) +  I(l i)) + I(i1)) + 1 (~) ) ) /2  
I ( - m ) )  - -  + + + + . . .  

I ( m n ) )  + + + 

If we go up to N shells (if N is large) there are about 2N 2 states in the diamond shaped 
nearest neighbour cluster. However there are only (N2/4 + N/2) ~ N2/4 states with 
square symmetry. We need only to work in 1/8 of the lattice but attach correct weights 
to the states to reproduce correct matrix elements. This reduction is standard in Brilluoin 
zone integrations in reciprocal space, but not so prevalent in real space calculations. 

If IIl and I J /  are two states coupled to each other via the Hamiltonian, and both 
belong to the same irreducible subspace, and let Iill, 112)... IIwll be states obtained by 
operating on I I /by  the symmetry group operations of the real space lattice. W1 is called 
the weight associated with the state labeled by I. If we wish to retain only the states in 
the irreducible subspace and throw out the others and yet obtain the same results, we 
redefine the Hamiltonian matrix elements as follows : 
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(IIHIJ > --~ ~ I 3 j ( L L ' ) ( I I H I J  ) 

The factor j3j(LL') requires explanation. The new irreducible basis, which is a linear 
combination of the tight-binding basis,  reflects not only the symmetries of the underlying 
lattice, but the symmetry of the starting orbital (spherical if it is a s-state, cylindrical 
if it a p-state and an % or t2g symmetry if it is a d-state) also. This symmetry of the 
starting orbital prohibits overlap at particular sites. These positions we shall define to be 
the symmetry positions with respect to the overlapping orbitals. These position depends 
on the L and L' content of I and J. If the state J is a symmetry position with respect to 
LL' then j3j(LL') is 0 otherwise it is 1. 

If disorder is homogeneous, then the cardinality sequence in configuration space itself 
has the symmetry of the underlying lattice. For example, in square lattice, the four con- 
figurations are equivalent. It is obvious they are related to one another by the symmetries 
of the square lattice. Thus in augmented space equivalent states are IR | {C}[ and the 
set I~R | {~{C}}[ for all different symmetry operators ~ of the underlying lattice. 

Diagonal formulation of ASR 

In this formulation the Hamiltonian is put in the effective diagonal disorder form. To do 
this, we first suppress all the indices and express the Green function in the following form 

<< G(E) > = <II(EI- H)- II> 
= <II(EI - C - 

= (1]A-a/2[EI  C S]-IA-a/2[I> (2.35) 

We now convert the above equation into augmented space. The augmented space 
theorem gives [Mookerjee (1973)] 

<< GRL,RL(E) >> = (R,L,{O}I (EI - H) -11R, L, {0}) 

First we note that : 

~XL-1/21R, L, {0}) -- A(AL1/2)IR, L, {0}) + F(A~L/2)IR, L, {R}) = I1} (2.36) 
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and  if we define [A(1/AL)] 1/2 [1} as [1), then this latter ket is normalized. We arrive at 
the  convenient expression : 

<< GRL,RL(E) >> = <1[ (E  I -  A + / }  + / ~ ' -  ~,)-1 i1 ) (2.37) 

where 

A = { A ( C L I A L ) I A ( l l A L ) } Z | 1 7 4  

= { B ( ( E - - C L ) / A L ) / A ( 1 / A L ) } E ~ P R | 1 7 4  
RL 

F = {F((E--CL)/AL)/A(1/AL)}y"PR|174 
RL 

RL RILI 

(2.3s) 

where 

A ( P )  = X PA + (1--X) PB 

B ( P )  = (1 - 2x) (PA-  PB) 

F ( P )  = ~ / x ( 1 - - x ) ( P A - - P B )  

This equation is now exactly in the form in which the recursion method may now 
be applied. The computational burden is considerably reduced due to this diagonal for- 
mulation, the recursion now becomes energy dependent as is clear from the form of the 
effective Hamiltonian and discussed in Biswas et al (1995), Ghosh et al (1999). This 
energy dependence makes the recursion technique computationally unsuitable because to 
obtain the Green functions we have to carry out recursion per energy point of interest. 
This problem has been tackled using seed recursion technique Ghosh et al (1999). The 
idea is to choose a few seed points across the energy spectrum uniformly, carry out recur- 
sion over those points and then interpolate the values of coefficients across the band. In 
this way one may reduce computation time. For example, if one is interested in an energy 
spectrum of 250 points, in the bare diagonal formulation recursion has to be carried out 
at  all the 250 points but in the seed recursion technique one needs to perform recursions 
only at 30-40 points. The whole idea stems from the fact that in most of the cases of 
binary alloys, it is seen that  the recursion coefficients an and bn vary quite weakly across 
the energy spectrum. At this point we note that the above expression for the averaged 
<< GLL(E) >> is exact. 
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LSDA self-consistency within the ASR 

The  local potentials seen by constituent atoms in a disordered alloy are very different 

from their atomic values or from their values in the corresponding ordered alloys. This 

is basically due to the redistribution of the valence charge densities on alloying. These 
potentials have to be self-consistently obtained within the LSDA. 

The initial TB-LMTO potential parameters are obtained from suitable guess poten- 

tials : either from their atomic values or from the nearest related ordered configuration. 

In subsequent iterations the potentials parameters are obtained from the solution of the 
Kohn-Sham equation 

2m + - E r E) = 0 (2.39) 

where, 

(2.40) 

Here u refers to the species of atom sitting at R and a the spin component. The electronic 
position within the atomic sphere centered at R is given by rR -- r - R. The core 

potentials are obtained from atomic calculations and are available for most atoms. 

The core potential is chosen to be identical to the free atom. The Hartree and 

exchange-correlation potentials within the LSDA are assumed to be functionals of the 

charge densities p~(rR) within the atomic spheres labeled by R. These local charge den- 

sities are obtained from the partially averaged Green functions : 

12 p~(rR) = L - dEIr n~%(E) 

where 

/2~O" 
n ~ ( E )  = -(1/Tr) ~m << GRL,RL(E) >> 

V~a 
where << GRL,RL(R ) >> is the partially averaged Green function, with the atomic sphere 
centered at  R occupied by an atom of the type ~ and spin a and the rest configurationally 

averaged over. These partial averages are obtained through the ASR. 

The Hartree potential needs discussion. We call the atomic sphere centered at R : SR. 
If we wish to obtain the Hartree potential within the atomic sphere SR when an atom 
of the type v sits at R, the configuration space at the site R is projected onto the fixed 
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configuration t,, while the configurations at the remaining sites is, say, random binary. 
Let us denote the "average state" by {vcR | 0}. 

= e [fs 

where 

R"r ]rR-- r~,,[ R"•R R" 

~p(r;,,) 
d3rR" ]rR - r'n,, 

~P(r'R") = / E :  dE [({r~,, | AeR" | q~}]F(E) | 2f/iR,,[{r' m, | AeR" | q~}l " - 

. . .  - ({r'  m, | BeR" | (~}]I'(E) | 2~-lR,,[{rIR,, | BeR"  | 

~(E) -- (-1/~) ~m 0(E), where G(E) is the augmented space resolvent (z i  - /~)-i 
and M R , ,  is the configuration operator, e.g. for the binary randomness MR,, = I | 
�9 . .  M R , ,  • I |  and, if x is the concentration of the A component : 

0 - x) ) 
MR,, = Cx(1 - x) 1 - - x  

The first two terms are identical to the usual expressions for the CPA [Ling et al (1995)]. 
Of course, the partially averaged and averaged charge densities in the ASR have the 
effects of configuration fluctuation of the immediate environment of the atomic site asso- 
ciated with the atomic sphere included in them. The last term represents configuration 
fluctuations in the charge densities associated with atomic spheres other than SR. This 
correction is taken only up to the nearest neighbour environment of SR. 

The exchange-correlation potential is a functional of the charge and magnetic moment 
densities: pV(rR)= p~T(rR) + pd(rR) , and mV(rR)=  pVT(rR)--pVl(rR). Various forms of 
the exchange-correlation function are available. For example, that proposed by von Barth 
and Hedin is the most commonly used. 

2.3.2 Generalized augmented space recursion 

Ordering or segregation phenomena in binary alloys and their electronic properties are 

closely related to each other. The electronic energy is order-dependent and, in turn, gov- 

erns the formation and stability of ordered, disordered and segregated structures. We 
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shall address the important problem of developing a first principles theory for predicting 
the tendency of ordering or segregation from electronic structure calculations. The ten- 
dency of ordering or segregation is governed by correlations in concentration between the 
neighbouring sites expressed in terms of the Warren-Cowley short range order parameter. 
Such correlations between constituent species are directly related to the behaviour of dif- 
fuse scattering and can be obtained from the quantitative intensity measurements on a 
single crystal. One needs a self-consistent first principles theory of correlated disorder in 
order to analyze such ordering tendencies. 

A generalized form of the augmented space formalism has been proposed by Mookerjee 
and Prasad (1993) and Saha et  al (1994) to deal with correlated disorder. 

T h e  genera l i z ed  a u g m e n t e d  space  t h e o r e m  

If the set of random variables { n k }  are correlated, the joint probability density does not 
break up into a product of the individual probability densities. However, we may still 
break up the joint probability density in terms of conditional probability densities. 

P ( n l ,  n2 ,  . . . , np,  . . .) = p ( n l )  p(n21n~)  p(n31n2,  n~) . . . p (nplnp_~,  r i p _ 2 , . . . ,  n~) . . . 

Like the probability densities, the conditional probability densities are also positive def- 
inite, integrable functions. We shall assume that moments of the conditional probability 
densities are finite to all orders. We have shown earlier that such functions can be written 
as the diagonal resolvent of an operator in configuration space of the random variable. 
The probability density p ( n l )  may be written as : 

p ( n l )  ---- --(1/~-) ~m (011(nlI -- 

We have chosen a particular basis 101), 111)..., Ic1> in which the representation of M1 
is tridiagonal, cl is the cardinality of the configuration at the site labeled 1. We have 
also stated earlier that the actual values taken by nl are the eigenvalues {m kl } of M1 and 
these values are taken with probabilities Wkl. It is easy to check that the average  s ta te  

may be expressed in terms of the eigenstates of M1 and the probabilities as 

kl 

Let us define : 

= | 1 7 4 1 7 4  
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Similarly, we may express the  condit ional  probabil i ty p(n2lnl) as 

p(n2ln~ = m~')  = - ( l / T r )  ~ m  (0d(n2I  - M~k')-l]02} 

Exact ly  as before, we may express the  average state in te rms of the eigenstates of M k~ 
and  the condit ional  probabilit ies {Wk2 }ha 

[02)  = 

and define, 

E ~ ~k2 VWk; ,,o= ) 
k2 

& = E P ~ ' | 1 7 4 1 7 4 1 7 7 1 7 4  
kl 

where pkl the projection operator onto the state kl at the site labeled I. 

In general : 

kp-1 
p ( n , l % - i  = m p _ l  ,. m = m~ ~) = - ( l / T r )  9;m (Opl (n f l  - Xik"k="'"k"-*)-~lOp) �9 . ~ - . - p  

and, 

/ .kl,ka,...,kp-1 ~ k p \  
Io,> = E E . . . E v ~ ,  , ,~ . ,  

k~,-1 kp-2 kl 

& = E E  EP~'| |174174177 | �9 �9 . o o o  o - ~ p  �9 �9 �9 

kx k2 kp-x 

The algebra of these operators is s t raightforward and we note  the  following : 

[ kpX r kx,k2,...,kp-1 
= ) 

We may now define the total  average s ta te  1{0}} as --v FI-e lop}. 



Theoretical and computational methods 

Expanding the terms in the brackets and using the fact t h a t / : k  pn~' 

40 

= 5kk, P k we obtain 

kl k:~ 

If we now define a well-behaved operator 

0.1 . k l  . k l  , k 2  
k l  ~ k 2  { ~ k 3  " " " 

Y ( { & } )  = . . . . . .  

r l  r2 rp 

It follows that ,  

= . . . .  . . . .  . . .  

kl ks r l  r2 

-- E E - - "  kl "kl'k2 n"--kl ,  mk22, "1 - -  . . . ~ J k l W k 2  tJJk3  .s 1 . . 

kl k2 
= << F({n,})  >> (2.41) 

The conclusion is that  the average of a function of a set of correlated random variables 

is also the matrix element, taken between the average state, of the operator constructed by 
replacing the random variables by the operators related to the conditional probabilities. 
This is the generalized augmented space theorem. 

For electronic structure calculations in a disordered system, F is chosen to be the ma- 
tr ix element of the Green function (zI - H ({ na  }))- 1, where H is the random Hamiltonian 

of the system and nR are the site occupation variables. 

We shall now assume that  short-range order is restricted to the first nearest-neighbour 

shell alone. This is a reasonable assumption, based on the fact that  short-range order 

decreases rapidly with distance . Hence the variables associated with sites beyond first 
neighbour shell will be assumed to be random with no correlation with the central site 

The macroscopic state of order for a AB binary alloy is described in terms of the 

Warren-Cowley short-range order parameter 

pr AB 
AS 1 (2.42) OL r 

Y 

with the B atom occupying the rth nearest neighbour site of the central A atom. y = 1 - x 
is the macroscopic concentration of the species B and pAB is the joint probability of finding 

a B atom anywhere in the r- th shell. 
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The probability density associated with the sites R', belonging to the first nearest 
neighbour shell of R, is given by 

p(nn,  lnR = O) = (y + OLX)5(nR,) + (1 - -a )X  5(nR, - 1) 

p(nR, InR = 1) = (X + ay)5(nR, -- 1) § (1 - - a ) y  5(nR,) (2.43) 

where nn is the variable associated with central atom and a = O~1AB 

Following the augmented space procedure described earlier, we first generate the op- 
erators hS/k for the binary distribution. The site R is associated with the label 1, and is 
the site at which the averaged Green function is calculated. 

The augmented space operator associated with the independent probability density is 

~ven by, 

~R = {~po + yp~ + v ~ ( ~  + xT~0) (2.44) 

At the neighbouring sites R', the operator associated with the conditional probability 

density is 

x~O | ~o, + y~o | ~i ,  + x ~  | ~o, + x ' ~  | ~i,  
q_Bl~O | (~1  q_ TlO) + B2:pl | (7"Ol q_ 7-1o) 

+B3(~,~ + T~O) | go, + B4(~,~ + T~O) | ~1, 

+B~(T ~ + T~ ~ | (r~ ~ + T~ ~ 

Various constants in the equation equation are defined through the following relations, 

X = x - ,~(x - y)  x '  = y + ,~(x - y)  

B1 = ~ / ( 1  - ,~)y(~ + ,~y) + y~/(1 - ,~)~(y + ~ )  

B2 = y~/ (1  - ,~)y(x + ,~y) + ~ / ( 1  - ~ ) z ( y  + ,~) 

S3 : Cevf ~ B4-- - o % f ~  

r  + + 

We should note that if a = 0 the operator /tT/R, reduces to the same form as -h~/n. 
Uncorrelated disorder turns out to be a special case with ~ set to 0. 
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We make explicit use of these operators and the central theorem for correlated random 

variables in the augmented space recursion method. The TB-LMTO Hamiltonian in the 

most localized representation may now be transformed to the augmented space Hamil- 

ionian exactly in the same way as we did for uncorrelated disorder. Once the effective 

Hamiltonian has been constructed, the generalized augmented space theorem gives the 

configuration averaged Green function to be 

<< Gnn,nn(Z) > =  <RL, O } I ( E / -  .f-I)-~IRL, {r 

2.3.3 The effective pair interactions 

We start from a completely disordered alloy. Each site R has an occupation variable 

nR associated with it. For a homogeneous perfect disorder (nR) - x, where x is the 

concentration of one of the components of the alloy. In this homogeneously disordered 

system we now introduce fluctuations in the occupation variable at each site �9 5XR = 

nR- X. Expanding the total energy in this configuration about the energy of the perfectly 

disordered state we get : 

N N 

E(x) = E (~ + E E(R ) SxR + E ~-'RR'~(2) 5xRSxR, + ... (2.45) 
R=I RR'=I 

The coefficients E (~ , E(~ ) . . .  are the effective renormalized cluster interactions. E (~ is 

the  energy of the averaged disordered medium. If we embed atoms of the type A or B at 

R in the disordered background and the total  energies are EA and EB, then by the above 

equation : 

E(~ )= EA-EB 

This one body interaction results from the interchange of a B atom with an A atom at 

site R in the alloy. 

Similarly, E(~i is the effective renormalized pair interaction which is the difference in 

the one body interactions at R, when site R' (5 R) is occupied either by an A or a B 

atom. 

ER 2) -~ E A A  -[- E B B  - -  E A B  --  E B A  R I 

For magnetic pair interaction energy we take the averaged non magnetic disordered 

medium and embed two similar atoms with two different spins up and down and calculate 
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pair interaction energy as explained above. The same we repeat for other components 

with two different spins, up and down. Then we embed the different atoms with similar 
as well as two different spins, up and down. This procedure gives us the magnetic pair 
interaction energies which are given as: 

jA  (~) TT &l T& &T 
a = E A A  + - - 

Similarly, 

And, 
j A  2) TT && Tl = + - - 

Therefore the effective magnetic pair interaction energy is given as: 

j(2) r(2) _ r(2) ~r(2) 
= O A A  T O B B  - -  ~ a A B  

Thus we can arrive at the relation of effective pair interaction energy including mag- 
netism as: 

ERR(2) ~(2) ~(~) ~(2)  T(2) r(2) ~r(2) 
' = " - "AA  + - L ' B B  - -  :"J--"AB + ~  + ' - ' B B  ~ ~ " a A B  (2.46) 

We will retain terms up to pair interactions in the configuration energy expansion. 
Higher order interactions may be included for a more accurate and complete description. 

For the phase stability study, it is the pair interaction which plays the dominant role. 

The total energy of a solid may be separated into two terms : a one-electron band 
contribution EBS and the electrostatic contribution E s s .  The renormalized cluster inter- 

actions should, in principle, include both EBS and E s s  contributions. Since the renor- 
malized cluster interactions involve the difference of cluster energies, it is usually assumed 

that the electrostatic terms cancel out and only the band structure contribution is impor- 

tant. Such an assumption though is not rigorously true, has been shown to hold good in 
a number of alloy systems [Heine (1988)]. 'Considering only band structure contribution, 
the effective pair interactions may be written as : 

R' = -- d E  - ~ m  l o g ~ d e t  G I J ( E )  ~zJ 
I J  

(2.47) 

where, G IJ represents the configurationally averaged Green function corresponding to the 

disordered Hamiltonian whose R and R' sites are occupied by I-th and J-th type of atom, 
and 
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~IJ = ~ + I  if I = J  
( - 1  i f I ~ J  

The behavior of this function is quite complicated and hence the integration by stan- 
dard routines (e.g. Simpson's rule or Chebyshev polynomials) is difficult, involving many 
iterations before convergence is achieved. Furthermore the integrand is multi-valued, be- 
ing simply the phase of ~ H d e t  (G zJ) ~xg. The way out for this was suggested by Burke 
Burke (1976) which relies on the repeated application of the partition theorem on the 
Hamiltonian H Ig. T h e  final result is given simply in terms of the zeroes and poles of the 
Green function in the region E < EF 

~max zk. '`J p k j g  -- Z k'IJ) EF -"RR' -- _ + pk,XJ (2.48) 
~J k=0 Lj=~ = 

Z k'zJ and p~j,zJ where ,~j are the zeros and poles of the peeled Green's function G~ J of 
disordered Hamiltonian with occupancy at sites R and R' by I and J of which first (k-l) 
rows and columns has been deleted, pk,IJ and z kJg are the number of poles and zeroes in 

the energy region below EF. 

The Augmented Space Recursion 

As discussed in the previous section, the calculation of the effective pair interaction with 
out magnetism as well as with magnetism taken into account in our formalism reduces to 
the determination of the peeled configuration averaged green functions (G/J). We shall 
employ the ASR coupled with the TB-LMTO introduced by Andersen and Jepsen (1984) 
for a first principles determination of these configuration averaged quantities. We shall 
take the most localized, sparse tight binding first order Hamiltonian derived systematically 
from the LMTO theory within the ASA and generalized to random alloys. The form of 
the effective Hamiltonian used for recursion in augmented space for the calculation of the 
peeled Green functions is given as : 

s s s 

= C,<,,<,,<a,< + E cl<,,, <4,a,<, + E E (c#,,, + '<'') +... 
s ~=1 R"#R,R '  ~=1 

+ E E "-'R,~ ,-'LL, t'-'R",~' +"'-'~' "': ) a;aR,, + . . .  
R " r  L=k L' 
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+ E E 
R ' ~ R , R  I R"~R ,R '  

+ E  
RI' ~ R' 

+E 

+ E  

E E  + 
L L ~ 

E E "'~R',s ~LL' ~"'~R',s "97 "} - ' ' "  
L L' 

/A'/2, s 5A~/2~IRI ' ) r  + 
L L'=k 

(A ' / ' ,  B 5A~/'~/IR1,) R",R' A ' / ' , '  a~,,aR, + . . .  
L L ~ 

nl/2,s 1/2~'~R'"~ "-~R"',e' + 5A~, ..~ ] . . .  

. . .  (a~,,an,,, + atR,,,an,) 

(2.49) 

N 

here, L is a composite index (Im). For a binary distribution M R is given by: 

~ I  R = x b~TbR T + (1 - x) btR~bR~ + ~/x(1 - x) (b~TbR ~ + b~bRT) (2.50) 

For non-isochoric alloys , the difference in atomic radii of the constituents lead to 
change in the electronic density of states, as confirmed by experiment [Wright et al (1987)] 
and approximate theoretical techniques [Bose et al (1992)]. One thus expects that the 
mismatch of size produces, in addition to a relaxation energy ER contribution, a change 
in the band structure. Within our ASR, off-diagonal disorder in the structure matrix 
S ~ because of local lattice distortions due to size mismatch of the constituents, can be 
handled on the same footing as diagonal disorder in the potential parameters which is 
discussed Section 2.4.1. 

The ASR with the TB-LMTO Hamiltonian coupled with orbital peeling allows us to 
compute configuration averaged pair-potentials directly, without resorting to any direct 
averaging over a finite number of configurations. Saha et al (2004) have discussed how one 
uses the local symmetries of the augmented space to reduce the Hamiltonian and carry 
out the recursion on a reducible subspace of much lower rank. If we fix the occupation 
of two sites, the local symmetry of the augmented space is lowered (this is very similar 
to the lowering of spherical symmetry to cylindrical symmetry when a preferred direction 
is introduced in an isotropic system). We may then carry out the recursion in a suitably 
reduced subspace. 

Static concentration wave method 

The static concentration wave (SCW) was proposed as a theory for ordering by Khachatu- 
ryan (1978, 1983). The occupation probability n (~  plays the key role in this theory. This 
function n ( ~  that determines the distribution of solute atoms in an ordered phase can be 
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represented as a superposition of concentration waves: 

1 
n ( ~ = x + - ~ .  [ Q ( ~ ) e x p ( i ~ . ~ + Q * ( ~ ) e x p ( - i ~ . r ~ ]  (2.51) 

3 

where e x p ( i ~ .  ~ is a static concentration wave, ~ is a non zero wave vector defined 
in the first Brillouin zone of the disordered alloy, ~' is a site vector of the lattice (r"}, 
index j denotes the wave vectors in the Brillouin zone, Q(~)  is static concentration wave 
amplitude and x is the atomic fraction of the alloying element. 

The study of phase stability requires accurate approximations to the configurational 
energy as well as the use of statistical models to obtain the configurational entropy. The 
configurational energy within the pair interaction can be represented in Fourier space as 
the product of the Fourier transform of the effective pair interaction V(fr and that of the 
pair correlation function Q(k): 

k 

where N is the number of atoms. Minimization of E will naturally occur for states of order 
characterized by maxima in the Q(k) pair correlation spectrum located in the regions of 
the absolute minima of V(f~). Consequently, much can be predicted about the types of 
ordering to be expected from a study of the shape of v(f~), particularly from a search of 
its absolute minima (special points). At these points, 

IVhV(h)l=O 

This was pointed out by Landau and Lifshitz (1969,1980), Krivoglaz and Smirnov 
(1964) and Khachaturyan (1978, 1983). Different types of ordered structures can be re- 
lated directly to the minima of V(f~). In other words, given the knowledge of concentration 
wave vectors, one can readily predict the most stable ordered structure of the system at 
low temperatures. This is comparable to the knowledge derived from the studies like 
those based on X-ray, electron and neutron diffraction. A peak at the F point, k = (000), 
indicates the phase separation, while a peak at the F point, k -- (100), in a FCC lattice 
suggests ordering. Peaks away from special points may correspond to the formation of 
long period superstructures. Within a simple mean field approximation, the instability 
can be obtained in the following way: If we add the expression for dominant quadratic 
term in the average energy to that of the configurational entropy under the simple mean 
field approximation we obtain an expression for the free energy: 

F = ~ Vi~(ni - x)(nj - x) + ksT  )-~[ni in ni + (1 - n~)ln(1 - ni)] 
i , j  i 
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where ni is the concentration of the species A at the i-th site and c is the average con- 
centration of that species. If we define a configuration variable V ~ as (hni)0 (the symbol 
( '" "/0 denotes micro-canonical averaging), which is the variable relevant to the stability 
analysis, then the harmonic term in the Taylor expansion of the above free energy is 

F2 N = T Er*(k(h))F(k(h))r(k(h)) 
h 

(2.52) 

where, f~(h) = 2~rh~b~ and = y - x). The stability of a solid solution with 
respect to a small concentration wave of given wave vector f~(h) is guaranteed as long as 
F(fc(h)) is positive definite. Instability sets in when F(k(h)) vanishes i.e. 

F(f~(h)) = kB T ~ + V(f;(h)) x (1 - x) = 0 (2.53) 

~r ~ being the temperature at which the instability sets in for the considered concentration 
wave. It appears from the above expression that under a simple mean field approxi- 
mation the spinodal is always a parabola in the temperature-concentration iT,x) phase 
diagram, symmetric about x = 0.5. It is the concentration dependence of the effective 

pair interactions which brings about the asymmetry. 

ExperimentMly the instability of the disordered phase to ordering may be seen in 
electron, x-ray or neutron scattering measurements. These are directly related to the 
%Varren-Cowley short range order parameter a(k) which in turn is related to effective 

pair energies through [Ling et al (1994)] 

Where/3 = 1/(kBT).  

x ( 1 -  x) (2.54) 
a ( k ) =  1 - $ x ( 1 - x )  V(k) 

2.4 Computat ional  details 

We shall illustrate the applicability and accuracy of our various numerical details by 
taking the example Ni-Pt alloy systems. 

2.4.1 Ordered alloys 

We have performed the total energy density functional calculations for the ab-initio elec- 
tronic structure description of alloys. The Kohn-Sham equations were solved in local 
spin density approximation (LSDA) with yon Barth-Hedin (vBH) [von Barth and Hedin 
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(1972)] exchange correlations. The calculations have been performed in the basis of tight 
binding linear muffin-tin orbitals (TB-LMTO)in the atomic sphere approximation (TB- 
LMTO-ASA) [Andersen and Jepsen (1984), Andersen et al (1987, 1992), Andersen et al 
(1994), Dan (2003)] including combined corrections. The calculations are semi-relativistic 
through inclusion of mass-velocity and Darwin correction terms. 

Convergence with respect to BriUouin Zone k points 

In Figure 2.1 we show the convergence of total energy and magnetic moments in NiaPt 
alloy. This indicates that large Brillouin zone mesh resulting sufficiently large number of 
k points in the irreducible part of the Brillouin zone for k space integration is necessary 
to produce converged magnetic moments. 
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Figure 2.1: Variation of total energy and magnetic moments as a function number of k 
points in the Brillouin Zone (BZ) for Ni3Pt alloy system. 

Effect of tetragonal distortion in magnetism 

Figure 2.2 shows the variation of total energy as well as magnetic moments in NiPt alloy as 
a function of tetragonal distortion. This shows that with the increase of tetragonal lattice 
distortion this alloy system slowly becomes paramagnetic. The LSDA calculation using 
TB-LMTO with von Barth and Hedin exchange correlation for NiPt ordered alloy reveals 
that at equilibrium lattice parameter (c/a = 0.927) this alloy system is paramagnetic. 
This agrees with the experimental prediction of Dahmani et al (1985). 
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Figure 2.2: Variation of total energy and magnetic moments as a function of tetragonal 
distortion in NiPt alloy system. 

2.4.2 Disordered alloys 

In our present calculations using the example of Ni-Pt alloy system, we take the advantage 

of first principle TB-LMTO and calculate the self consistent relaxed potential parameters 

through a energy minimization procedure and then employ the charge neutrality procedure 

for the treatment of charge transfer effect. For 25 and 75% concentration of Pt in Ni-Pt 

alloy the energy minimization was done with varying total energies as a function of lattice 

parameter to get the equilibrium lattice parameter. In 50% concentration of Pt of ordered 

Ni-Pt alloy, it was experimentally observed that there is a tetragonal distortion. Since 

we are dealing with substitutional disorder, there may be a corresponding distortion in 

the disordered phase, In this case the energy minimization was done with varying total 

energies as a function of lattice distortion (c/a) to get equilibrium lattice distortion. Using 
this equilibrium lattice distortion we then applied the charge neutrality procedure for the 
treatment of charge transfer effect for this particular concentration. 

In the following we discuss some of the issues related to electronic structure calculation 
of disordered alloys which need special attention. 

Treatment of charge transfer 

The treatment of charge transfer in disordered alloys has been a longstanding problem. 

This is because of the fact that to treat charge transfer in disordered alloys accurately 

one has to calculate the Madelung potential which is difficult as it depends upon the far 

environment in a given configuration. Therefore the calculation of Madelung potential is 

a challenging job for disordered alloys due to the absence of lattice periodicity. For the 
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treatment of the Madelung potential, we follow the procedure suggested by Andersen et al 
(1987, 1992) and further extended and implemented by [Kudrnovsl~ and Drchal (1990)] 
for disordered alloys. We take the advantage of the flexibility of choice of atomic sphere 
radius in the TBLMTO-ASA to minimize the Madelung energy so as to make it negligible. 
V~'e choose the atomic sphere radii of the components in such a way that they preserve 
the total volume on the average while the individual atomic spheres are almost charge 
neutral. The potential parameters in the alloy for the component Q(A or B) should be 
calculated at new radius sQ = (3VQ/4r) 1/3. The values of the potential parameters at the 

0 radii appropriate in the alloy phase SQ can be obtained from the normal pressure radii sQ 
and the volume derivatives of the potential parameters using the logarithmic interpolation 
formulae. 

o = q + d Qln(sq/sq) 

0 = L + dl--  qln(sQ/sQ) 

(2.55) 

The potential parameters A~ and ~tQ of the constituent Q were then scaled by the 
factors (sQ/s~t~ 2t+1. These potential parameters were used to parameterize the alloy 
Hamiltonian. 

Lattice relaxation effect 

(a) Deviation from Vegard's law: 

Usual treatment of alloys with substitutior~al disorder place all atoms on a regular lattice 
whose lattice spacing is obtained by assuming Vegard's law. Vegard's law gives reasonably 
good results for those alloys made out of components with nearly equal atomic radii but 
fails for non isochoric alloys with components having large size mismatch. One therefore 
in general obtains equilibrium lattice constant from energy minimization with respect to 
the lattice constant. This approach takes into account differential expansion (contraction) 
around larger (smaller) atom for non-isochoric alloys. In Figure 2.3 we have shown the 
relative magnitudes of nearest neighbour distances for different concentrations of Pt in 
NiPt alloy system compared to Vegard's law values for average bond length. As the figure 
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shows, the nearest neighbour distances calculated using equilibrium lattice parameter is 
quite different than the Vegard's law values for average bond length. 
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Figure 2.3: Nearest neighbour distance vs concentration of Pt with the choice of neutral 
charge spheres. For comparison the average bond length given by Vegard's law is shown 
in solid line. 

(b) Local lattice distortion : 

For non isochoric alloys whose constituents have large differences in atomic radii, one also 
has the possibility of local lattice distortions. 

Various phenomenological theories of alloying such as the Hume-Rother~ rules, state 
that  size effects are significant for the study of phase stability. Local lattice distortions 
strongly influence mechanical properties of alloys like hardness and ductility. In magnetic 
alloys, local distortions may affect local magnetic moments. 

Local lattice distortions essentially bring about disorder in the structure matrix and 
lead to off-diagonal disorder. An attempt to study the influence of lattice relaxation on 
electronic structure of concentrated alloys has been made by Kudrnovsk:~ and Drchal 
(1989) within the LMTO-CPA. They have suggested an approximate way of treating 
this through a mapping of the Hamiltonian onto an effective Hamiltonian with diagonal 
disorder alone. They assume a multiplicative form for the off-diagonal terms in the Hamil- 
tonian. The random structure matrix is replaced by the non-random structure matrix of 
the undistorted lattice multiplied on two sides by site-diagonal random factors. 

We wish to present the ASR as a formal way of dealing with off-diagonal disorder. 
There will be no need to assume a multiplicative form of the off-diagonal terms of the 
Hamiltonian. Structural disorder arising out of size mismatch is one candidate where a 
simple multiplicative form of an effective Hamiltonian may no longer be valid. 
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The random Hamiltonian for binary AB alloy described under the framework of the 
TB-LMTO is given by 

[-I = xj-~{CAnR + c B ( 1  - -  nR) }T 'Rz ,  + ~ ~ { ( A A ) I / 2 n R +  . . .  

(AB) 1/2 ( 1 -  nR)} SRL,mL' { (AA,)I/2 nR, + ( A S )  1/2 ( 1 -  nR,)} TRL,a'L' 

where the potential parameters C and A at the site R can belong either to the A or 
the  B a tom depending upon which type of atom occupies R (i.e. nR is 0 or 1). In 
absence of positional disorder, the structure matrix in the most localized representation is 
independent of the component atom type and is not random. However for non-isochoric 
alloys, the atoms get shifted from their undistorted positions. 

The lattice distortion is essentially local and its effect on the structure matrix depends 
predominantly on the immediate environment. As an example, on a face-centered cubic 
lattice we can identify the smallest distorted tetrahedral units of nearest neighbour atoms. 
Possible configurations of A and B atoms occupying the corners of the units can be 
AAAA, AAAB, AABB, ABBB or BBBB. The AA and BB distances are different and 
the distance AB is the average of the two. The configurations obtained by rotation from 
other similar configurations have the same contribution to the structure matrix. Thus the 
structure matr ix  element between two points accruing in the unit will be given by 

SRL,a'L' o(AAAA)  .r rim,(1 rim,,) + . . .  --'~ DRL,R,  L, nR nm nR,, urn,, + ~RL,R'L '  [nR nR, 

+(1 -- nR)nR, nm, nm,, + nR(1 -- nR,)nR,, nm, ,+  nR nR,(1 -- nm,)nR,,,] + . . .  
[..r 

~RL.mL' [nR n m ( l  - -  n m , ) ( l  - -  nR,,,) -F ( I  - na)nR,(1 -- nR,,)nm,, + . . .  

+(1 -- nR)(l  - nR,)nm, n m , +  (1 - nR)na, nm,(1 -- nm,,) + . . .  

+nR(1 -- urn)(1 -- na,,)nl~,,, + nR(1 -- nR,)nm,(1 -- nR,,,)] + . . .  
+ o(BBBA)[--  /1 

~'RL,mL' ['~ak" -- n R , ) ( l  - -  n m , ) ( l  - -  n m - ) +  ( i  - -  nR)nR, ( l  -- n m , ) ( l  - -  nR,,,) + . . .  

+(1 - -  nR)(i  - nm)nm,(Z - n m , , )  + (1 - nR)(1 - nR,)(i - nR,,)nR,,,] + . . .  
_F~(BBBB) rl 

"RL,a'L' ~ -- nR)(1 -- nR,)(1 -- urn,)(1 -- nR,,,) 

(2.5 i 

where nR- and nR,,, describe the influence of the local environment on the structure matr ix 
element connecting points R and R'. This description takes into account both the effect of 
distortions of the distance between R and R ' and the angular distortion of the tetrahedron 
as we go from one configuration to another. 
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For the face-centered cubic lattice with structure matrix practically vanishing beyond 
the first nearest neighbour shell, number of such inequivalent configurations will be 144. 
Consideration of all these configurations will:lead to an exact treatment of the distor- 
tion upto the first nearest-neighbour environment. However since, with the number of 
possible configurations increasing rapidly the computational effort very quickly becomes 
prohibitive, we shall assume that the dominant influence of off-diagonal disorder comes 
from the configurations of the two ends of the distorted bond extremities. This is the 
terminal point approximation. In this approximation only the bond stretchings or con- 
tractions are taken into account and all terms involving hR,  and mR-, in the example of 
the tetra.hedron are replaced by their averages. Thus, the effect of angular distortions is 
taken into account in an averaged sense�9 Invoking the terminal point approximation the 
number of inequivalent configurations of the bond become three : AA, AB and BB. The 
distribution of structure matrix is a tri-modal one. 

~RR' AA AB (1 SBLB,(1 nR)(1 nR,) S~.L,[nR(1 n m )  + -- nR)nR,] + -- -- ~LL' ~ SLL 'nRnR' "+" 

The Hamiltonian in the terminal point approximation is 

( B B  _ ,,~C(1) H = E:(C~ + ~CL'~R)~',~ + E: E: ~) lJ~  (S~,R,L, + (nR + ,~R ;~,~,+R'L' + ' ' "  

- + �9 "" + n R  'bR ~ R L , R ' L ' )  A B  (3) 

�9 + ( A ' : )  + �9 IbR'~RL,R'L' ] ~/kL' 

(2.57) 

where 

~cL = c ~ - c 2  

S(1) B B  A B  
RL,R'U ~ SRL,R'LI -- SRL,R'L' 

r  AA B B  
- -  S~ I ,R ,  U "-{- S R L , R ,  L, ""RL,R 'L '  - -  

q,(3) A n  A B  
-- SRL,R, U -- SRL,R, L, J'RL,R'L' -- 

q(4) AA BB 
-- SRI,RIL, "~- SRL,R, L, ~RL,R'L' 

AB 
- -  2 S R L , R ,  U 

AB 
-- SRL,R'L' 

The Hamiltonian in the augmented space is constructed by replacing the site oc- 
cupation variables nR by the operators MR defined in configuration space. Once this 
Hamiltonian and its operations are defined, we apply the recursion method in augmented 



Theoretical and computational methods 54 

space to obtain the continued fraction coefficients for the configuration averaged Green 
function. The degree of lattice distortion is however a delicate problem which calls for 
a first-principles treatment including minimization of the total energy with the degree of 
distortion. The corresponding calculations should provide both displacement of atoms 
and the electronic structure in the distorted lattice. Within the present computational 
implementation such calculation is still not possible In our calculation, we therefore made 
further assumption concerning the degree of lattice distortion. 

The calculation of the magnitude of lattice distortion has been carried out within 
the structural model given by rigid ion structure (RIS) [Ma~ek and Kudrnovsk~ (1986)]. 
According to this model the lattice relaxes in such a way as to keep all the nearest 
neighbour distances close to the sum of the corresponding atomic radii for a particular 
concentration. This is found to be a reasonable model to deal with lattice relaxation 
effects in non-isochoric alloys [Saha and Mookerjee (1996)]. 

For a binary alloy of composition AxBy the volume Vauov is written in terms of it's 
constituents as 

xVA + yVB = V~uov. ( 2 . 5 8 )  

The pressure volume relates the volume of the constituents in the alloy with their undis- 
torted volume, V ~ and V ~ yields 

(vA-  v2) ( v . -  v o) r o 
: - ( 2 . 5 9 )  

v2 v o r o 

where flo (Q = A, B) are the bulk moduli of the components. 

The solution of equations 2.58 and 2.59 yields the volumes of the constituents VA and 
V B a s  

0V, riB aUov + Y V ~  ~ - rio) V ~ (2.60) 
vA = x v 2 r o  + o o yV~& 

VB = r~176 + Y V ~ 1 7 6  - r ~  V ~ (2.61) 
x v o r  o + y v o r  i 

This in turn gives the atomic radii of the constituents in a particular alloy system. 

Considering the example of calculation of AB SLi~ where B is the larger atom (e.g. Pt in 
the present case of Ni-Pt alloy), this matrix for a specific pair among 12 nearest neighbours 
connects an A atom at the site (0, 0, 0) and a B atom. For example a B atom in the 
undistorted case would have been at the position (~,  ~,  0) is now at ((~ + d), (~ + d), d), 
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where d is the displacement due to lattice distortion and a is the lattice constant. We have 
assumed that  the lattice expands equally in :the x, y and z directions. With these new 
c~ordinates and assuming that all other neighbouring coordinates are fixed at undistorted 
FCC positions, we compute the structure matrices S AA, SLA~ and SL BB. This takes into 
account both the effect of radial distortion as well as angular distortion (the nearest 

neighbour is now ~ /~  + 2ad + 3d 2 instead of ~ and the nearest neighbour vector is 
((~ + d) , (~ + d) , d) instead of (~,  ~ , 0) in the above example). Consideration of rigid 
ion structure approximation and the knowledge of constituents atomic radii provides the 
value of d. The values of d for AB SLL, c a m e  out to be 0.064 a, 0.052 a and 0.054 a for 25%, 
50% and 75% concentration of Pt in Ni-Pt alloy systems. 

Effect of short range order 

In most of the alloys there is either short range ordering or segregation tendency which 
actually determines the differences in phase stability properties. We have used the gener- 
alized augmented space recursion method which allows us to calculate the effect of short 
range order in the electronic structure of alloys. In augmented space recursion the Hamil- 
tonian in the direct product space of real and configuralilon is written in terms of operator 
which replaces the local site occupation variables. In this case the joint probability distri- 
bution breaks up into individual probabilities. But in the case of generalized augmented 
space recursion the Hamiltonian which is written in terms of operator depends on the 
short range order parameter. In this case the joint probability is broken up into condi- 
tional probability densities. We perform recursion taking this generalized Hamiltonian 
to study the effect of the short range ordering in the electronic structure. In general the 
Warren Cowley short range order parameter decreases rapidly with distance. We have 
considered the correlation of central site with the sites of first neighbour. 

Considering the example of Ni-Pt alloy system, the variation of total energy with a 
SRO parameter in this system shows a tendency towards ordering. In Figure 2.4 we show 
the variation of SRO parameter from segregation side to ordering side in particular for 55% 
concentration of Pt  in Ni-Pt alloy. This tendency agrees with the experimental ordering 
behaviour of this system. The short range ordering is also found to have appreciable 
effect on the magnetic moments for NiPt alloy system. The value of magnetic moment 
including the SRO effect comes lower than the value without SRO effect and approaches 
the experimental value obtained by Parra and Cable (1980) which is discussed in detail 
in Chapter 3. 
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Figure 2.4: Variation of magnetic moments as a function of short range order parameter 

in Ni45Pt55 alloy system. 

Convergence properties in augmented space recursion 

For the calculation of physical properties of disordered alloys, the ASR coupled with first 
principle TB-LMTO has proved to be one of the successful and alternative to k-space 
integration methods. To establish the accuracy of the method one needs to carefully 
check errors in the recursion procedure in the augmented space and its convergence. 

When we talk the convergence of the recursion method, we have to be careful in stating 
precisely what we mean. Finite space approximates to Green functions do not converge 
for real energy values. This problem arises in every computational method, as noted 
by Haydock et al (1972). The problem definitely arises in the usual k-space integration 
techniques, where methods using either complex energies or complex k-s have been at- 
tempted. The cause of this non-convergence is that an arbitrary small perturbation, like 
adding a single atom to a large but finite system, can shift all eigenvalues of the system. 
This causes an infinite change in the Green function near its corresponding poles. Thus, 
the precise meaning of the convergence of the recursion should imply rather the conver- 
gence of physical quantities built out of it. Most physical quantities are averages over the 

spectrum of the type : 

F F(E) = f(E')  n(E')dE' 
o o  

It is the convergence of these quantities which will decide whether the recursion is 
convergent or not. For example, the Fermi energy is defined by 

: :  (E')dE' n = ne 
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Figure 2.5: Log-log plot of the number of sites as we increase the number of shells in 

augmented space. 

where ne is the total  number of electrons. While the band energy is 

U f / ~  E' n(E')dE' 

We shall study in general the convergence of indefinite integrals of the kind 

Mk(E) = /__/oo(E')k n(E')dE' 

The integrand E 'k is monotonic and well behaved within the integration range.  

Errors can arise in the augmented space recursion because one can carry out only 

finite number of recursion steps and then terminate the continued fraction using available 
terminators. Also one chooses a large but finite part of the augmented space nearest 

neighbour map and ignores the part  of the augmented space very far from the starting 
state. In Figure 2.5 we show how the number of sites increase as one increases the number 

of augmented space shells. 

(a) Error analysis on the continued fraction : 
We shall first carry out a simple error analysis of the continued fraction expression for 

the Green function because of errors created on the continued fraction coefficients. The 

procedure is similar to the one discussed by Haydock et al (1972) 

The recursion is a two-term recurrence relation. We may therefore generate from this, 

a pair of linearly independent set of polynomials through the relations : 
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bn+lX~+l(E) = (E -an)X,~(E)  - b,~Xn-1 (2.62) 

where, X~ is either P~ or Q~ according to the initial conditions : 

P I ( E )  = 1 P~(E) = ( E -  al)/b2 
QI(E)  = 0 Q2(E) = 1 

The approximated Green function in terms of the terminator T(E) is given by : 

QN+~(E) - bNQN(E)T(E) 
aN(E) = 

b~ [PN+~(E) - bNPNT(E)] 

The terminator determines entirely the essential singularities of the the spectrum. 

Haydock et al (1972) showed that a finite composition of fractional linear transformations 

like the one above can at most add a finite number of poles to the spectrum. The essential 

singularities of the exact G(E) and T(E) coincide. The fractional linear transformation 

redistributes the spectral weights over the spectrum. 

Let us now assume that we make errors {San, 5bn} in the corresponding continued 

fraction coefficients. If we now start generating the orthogonal polynomials, starting from 

the exact initial conditions, but with the errors in the continued fraction coefficients, we 

shall obtain a pair of sets {/5,,} and {(~n}. In general we shall have, 

P~(E) = (1 + A~(E))Pn(E) + B,~(E)Q~(E) 

If we substitute this back into the recurrence relation and keep only the first order terms 

in the errors, 

An(E) 

Bn(E) 

= {6a,~[P~,+I(E)Qn+I(E)] 

+ 6b,~[P,~(E)Qn+I(E) + P,~+I(E)Q,~(E)]}/bl 

= 2 - 5 b . [ 2  

(2.63) 

Using the above and the expression for the local density of states , we find that the first 

order relative error produced in the local density of states 

n(E) --- -2  ~ As(E) + blR(E) B~(E) 
n = l  
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where R(E) = T~e G(E). If we define the weighted Hilbert transforms of Pn(E)  as the 

so-called associated functions : 

P,~(E')n(E') E' Q. ( E) = ne { -~---~ d } 

These associated functions are also solutions of the three-term recursion. They are not 

polynomials, but are nevertheless orthogonal to the set P . ( E ) .  In terms of these, the 

error in the  density of states is : 

5n(E) 2-- ( oo 
= ~ ~_, [Sa, P,+l (E)Q,+l(E) + 25b,+l P,+I Q,+2] 

n(E) bl [,=1 J 
(2.64) 

The error in the Fermi energy will be given by : 

1 oo 
5EF -- n(EF) ~ {Sa"A(~ + 

While the error in the various moment functions are : 

(2.65) 

OO 

5Mk(E) = 5EFEkn(EF) + E {SanA(k)(EF) 

Where, 

+ 5bn+IB(k)(EF)} (2.66) 

2 F A~)(E) = b-~ oo 
4// 

s(k)(E) = ~ ~o 

P.+ I (E') Q.+ I ( E') ( E')kn( E')dE' 

Pn+ I (E') Q.+ I (E')(E') ~n( E')dE' 

(2.67) 

(b) Termination Error : 
In all computational calculations, the recursion can be carried out at most to a finite 

number of steps. After which the continued fraction is terminated by a terminator function 

T(E) as discussed earlier. We have used the terminator of Luchini and Nex (1987) which 

smoothly joins onto the rest of the continued fraction and which reproduces the band 

widths, band weights and the essential singularities of the Green function at the band 
edges. Its spectral distribution is smooth, akin to a simple semicircular distribution. 
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Consider two situations, one in which we terminate at the N-th step, so that all coef- 

ficients for n_< N are free from the termination error; and another in which we terminate 
after (N+r) steps. The recursive error in the Fermi energy and the band energy are : 

AEFN+r ,N  __ 1 N + r + l  
n(EF) E (Sa'~A(n ~ + 6b,~+1B(~ 

n = N + l  

NWr+l 

n----N+l 

Here, AU N+r,N is 6U N+r - 5U N and 6an and 5bn+1 are the errors produced in these 

coefficients because of the termination where we replace the exact coefficients by the 
terminator coefficients. In case the coefficients converge, then if N is sufficiently large 

this recursive errors also converge. This is consistent with Haydock's criterion of the 
divergence of the series ~(I/bn). 

(c) Finite size errors : 

The termination error is not always the predominant error in recursion calculations. 
Starting from a single state IP~, L, {0}), the total number of states over which the sub- 

sequent recursively calculated basis spreads out, i.e. the rank of the subspace accessed 
by recursion, soon becomes prohibitively large. This is particularly true in the full aug- 

mented space. Not only are the lattice neighbours of the initial site accessed, but also 

all possible configurations of this cluster of sites. Figure 2.5 gives us some idea of the 

rank of the subspace accessed per recursion step of a binary alloy on a face centered cubic 

lattice. This can be tackled using the point group symmetries of the underlying lattice, 
the symmetry of the starting state, and the underlying symmetries of the configuration 

space (in case the disorder is homogeneous). This procedure drastically reduce the rank 

of the invariant subspace on which the recursion effectively acts. This is explained in 
great detail by Saha et al (2004). 

In this section, we shall analyze the error made when the recursion hits a boundary 

and carries on further. Since we do not allow Hamiltonian elements within and without 

this subspace, the problem is that of a perfectly reflecting boundary. 

The continued fraction coefficients can be expressed in terms of either H~nkel deter- 

minants of the Hamiltonian moments : 

Kn-2 H,~ /in H,~-I 
a n + l  - -  + n>_ 1 

Kn-1 H,-1 Kn-1 H,~ 

and 
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where 

b~+l 
H~/-/~_2 
-/n2_l n>__ 1 

/ / .  

~ 0  

#1 
o . .  

~ 2  " ' "  ~ n T 1  

o . .  . . .  . . .  

~ n §  �9 �9 , ~ 2 n  

#2 
o .  �9 

~ n + l  

~ 2  . . .  ~ n + l  

~ 3  . . .  ~ n + 2  

0 . .  . o D  . . .  

~ n + 2  - . .  ~ 2 n + l  

Thus if we make sure that  the rank of the accessed subspace is sufficiently large that 

its boundary is not hit by recursion up to M steps, then up to 2M moments of the density 

of states are exactly reproduced, errors occur only from moment 2M+1. For the coherent 

potential approximation for diagonal disorder, we knoiv that the first eight moments are 
exact and the subsequent moments of the order O((1/Z)n), Z being the connectivity of 

the lattice. To obtain comparatively accurate results with recursion we must go at least 
four steps of recursion and make sure our estimate of errors in the subsequent recursion 

coefficients and the terminator are comparable with the CPA which is also used to study 

the physical properties within single site mean field approximation. 

To illustrate our results we have carried out the calculations using energy dependent 

formulation of augmented space recursion in which the disordered Hamiltonian with di- 
agonal as well as off-diagonal disorder is recast into an energy dependent Hamiltonian 

having only diagonal disorder. This allows one to sample more shells in the augmented 
space. Though this formulation reduces the computational burden, the recursion becomes 
energy dependent and it is not suitable to carry out one recursion per energy point. This 

is tackled by choosing a few seed points across the energy spectrum uniformly and then 
carry out recursion on those points and spline fit the coefficients of recursion through 

out the whole spectrum. This enabled us to carry out large number of recursion steps 

since the configuration space grows significantly less faster for diagonal as compared to off 

diagonal disorder. Using this formulation and convergence procedure , we have checked 
the convergence of Fermi energy along with the band energy and magnetic moments with 
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Figure 2.6: Fermi energy, band energy and magnetic moments as a function of recursion 

steps in Ni3Pt. 
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respect to recursion steps before termination in Ni3Pt. Figure 2.6 shows the convergence 
beyond seven step recursion. However, to have better convergence we may have to go 
more steps of recursions with equally more number of augmented space shells. Since the 
augmented space recursion is performed in the TB-LMTO basis the errors in the recursion 
procedure should be within the ambit of TB-LMTO itself. 
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Figure 2.7: Fermi energy, band energy and magnetic moments as a function of seed energy 
points in Ni~Pt. 

In Figure 2.7 we show the convergence of Fermi energy along with the band energy 
and magnetic moments as a function of seed energy points in Ni3Pt. These quantities 
converge beyond thirty five seed energy points. 

In Figure 2.8 we show the variation of first nearest neighbour pair interaction energy 
as a function of number of recursion steps in NiPt3 alloy system. These interaction 
energies are calculated using the augmented space recursion method coupling with orbital 
peeling technique in the basis of TB-LMTO as discussed in 2.3.3. Interaction energies 
are calculated at the Fermi energy which is obtained using diagonal formulation of the 
procedure pointed out above. We clearly see the convergence of pair interaction energy 
beyond seven step recursion. Since the pair interaction energies are used to study the 
chemical ordering or segregation and phase stability coupling it with statistical models like 
concentration wave approach in binary alloys, it is important to check their convergence. 

These systematic studies indicate that such convergence analysis is essential for every 
case under study using the augmented space based recursion method. 

2 .4 .3  P h a s e  s t a b i l i t y  analys i s  

The pair interaction energies obtained from the electronic structure calculations (ASR 
coupled with orbital peeling technique in TB-LMTO basis) are now used as the inputs for 



Theoretical and computational methods 64 

~ 0  

o 

"~10 
B 
i -  

r 

I I I I 

3 5 7 9 
Recursion steps 

Figure 2.8: First nearest neighbour pair interaction energy as a function of recursion steps 
in NiPt3 alloy system. 

the calculation of differences in the formation energies of ordered and disordered phases 
(ordering energies), relative stability of the ordered phases in terms of calculation of 
anti phase boundary (APB) energy and the determination of ordering vectors (known as 
ordering stars). 

Ordering energy 

The ordering energy is defined as the difference between the formation energy of ordered 
alloy and the corresponding formation energy of disordered alloy. Since we are dealing 
with the effective pair potentials, the ordering energy can be calculated using these pair 
potentials. The relation for ordering energy using pair potentials is given as [Turchi et al 
(1988)]: 

EOrd 1 
= "~ ~ Vk6xo6xk (2.68) 

where, 6xo (6x~) = Xo (xk) - x, Xo (xk) = 1 if the site o/k is occupied by A atom and 
Xo -- 0 if the site o/k is occupied by B atom. For Llu structure (as for examples Ni3Pt and 
NiPt3) the expression for ordering energy per atom in terms of pair potentials considering 
only up to fourth nearest neighbours is given as: 

~d ~ I i 
- - �89 + - y4] 

For L10 structure for NiPt the expression for ordering energy per atom considering up to 
fourth nearest neighbour pair potentials is given as: 

ord 1 E~ipt = -~[V1 - V2 + Va - 1/4] (2.70) 
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Using these two relations we have found the ordering energy for Ni3Pt, NiPt and NiPt3 
which are discussed in detail in Chapter 4. 

Antiphase boundary energy 

Kanamori and Kakehasi (1977) used the method of geometrical inequalities which is capa- 
ble of searching for ground structure. They considered the energy of the three dimensional 

Ising like model: 
Ec= y~VkPk (2.71) 

k 

where, Vk is the interaction constant of the K-th nearest neighbour interaction and Pk 
is the total number of k th neighboring pairs in the given configuration. Defining the 

anti-phase boundary energy ~ by 

~ = -V2 + 4 V3 - 4 V4 , (2.72) 

the authors proved rigorously that for ~ > 0, L12 and L10 are the corresponding 
superstructures possible at concentration 25 % and 50 % while for ~ < 0, one has the 
DO~ and A2B2 superstructures. We have applied these conditions in our calculations to 
find out the relative stability between D022 and L12 structures in Ni3Pt and NiPt3 that 
between A2B~ and L10 in NiPt. The details of relative stability analysis in Ni-Pt systems 

is discussed in Chapter 4. 

Special-point ordering 

A wide range of phenomena related to order-disorder and magnetic transitions can be 
explained using the symmetry properties of the pair potentials (Vq). If a symmetry 
element (rotation, rotation-inversion or mirror plane) of the space group in k-space is 
located at point h, the vector representing the gradient VhV(h) of an arbitrary potential 
energy function V(h) at that point must lie along or within the symmetry element. If two 
or more symmetry elements intersect at point h, one must necessarily have 

IVhV(h)l = 0  (2.73) 

since a finite magnitude vector can not lie simultaneously in intersecting straight lines 
having only a point in common. At these so-called special points, the potential energy 
function V(h) represents an extremum regardless of the choice of the pair interaction 
energies. Thus special points play an important role in the search for lowest energy ordered 
structures. The points which differ by a vector of a reciprocal lattice are considered 
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Table 2.1: The special points and stars of the FCC structure. 

k-vector Star Members Brillouin zone points Ordering structure 

<ooo> 

(lOO) 

<i o> 

[ooo] 

[lOO] [OLO] [OOl] 

[i 0] [0 0] 
_1-1_11 
222J L55~J 

F 

X 

W 

L 

L12, L10 

A2B2, D022 

Lll 

equivalent. In the case of simple structures with a single atom per unit cell, it is sufficient 
that two symmetry elements intersect at special points. These special points are listed 
in the crystallographic tables. They are always located at the surface of the Brillouin 
zone. The 'star '  of a special point vector k is obtained by applying all the rotations and 
rotation-inversion of the space group on the vector k. All these vectors of a star are also 
considered equivalent. The special points of the FCC structure are located at the points 
F, X, W and L of the Brillouin zone as shown in Table 2.1. 

2.5 Summary 

The theoretical methods presented in this chapter along with the computational details 
taking the example of Ni-Pt alloy systems demonstrates ASR coupled with first principle 
TB-LMTO is able to tackle charge transfer, lattice relaxation, short range order effects 
in disordered alloys. The study of convergence properties shows that the errors in this 
method can be made compatible with the errors inherent in the TB-LMTO. This gives 
us confidence about the reliability of our computation results. 



C h a p t e r  3 

Electronic and magnetic properties of X-Pt 
(X--Fe,Co,Ni) alloy systems 

The magnetic and chemical interactions in solid solutions, their interdependence and the 
role they play in determining the electronic and magnetic properties of transition metal 
alloys have been the subject of extensive research since many years. The interplay between 
magnetism and spatial order in transition metal alloy systems has been extensively studied 
both experimentally [Cadeville and Mor~n-L6pez (1987), Mirebeau et al (1982), Pierron- 
Bohnes et al (1985), Mirebeau et al (1984), Pierron-Bohnes et el (1983)] and using phe- 
nomenological models based on statistical thermodynamics [Sato et al (1959), Swalin 
(1962), Vonsovskii (1974), Sieber et al (1981), Bieber and Gautier (1981),Bieber and 
Gautier (1986), Hennion (1983), Marshall (1968), Hicks (1970), Hasegawa and Kanamori 
(1971), Suttler (1973), Jo and Miwa (1976), Jo (1976), Hasegawa (1979), Hamada 
(1979), Kakehashi (1982)]. In this chapter, we studied the electronic and magnetic prop- 
erties of ordered as well as disordered phase of the Fe-Pt, Co-Pt and Ni-Pt. Many studies 
on optical and magneto-optical characterization of these systems are available in recent 
literatures [Uba et el (1998), Greets et al (1994), Weller et al (1994)] Nevertheless, a 
systematic first-principles study bringing out the interdependence of the magnetic and 
chemical ordering and the trend in this allay series is lacking. The present chapter aims 
at a systematic and comparative first principles study of the electronic structure and mag- 
netism in these systems, using techniques based on the local spin density approximation 
(LSDA) of the density functional theory. 

Considering the case of ordered alloys, we have carried out a thorough study includ- 
ing careful investigation of the influence of various local as well as non-local exchange 

Contents of this chapter has been published in Durga Paudyal, T. Saha-Dasgupta and A. Mookerjee, 
J. Phys.: Condens. Matter 16 2317 (2004) 
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correlation functionals on the value of the equilibrium lattice parameters and magnetic 
moments of ordered Fe-Pt, Co-Pt and Ni-Pt alloy systems. 

The calculational scheme used for our calculations of disordered alloys is based on 
augmented space recursion (ASR) technique. As already discussed in chapter 2, among 
the various advantages of the ASR in going beyond the single-site approximation is the 
possibility of inclusion of local lattice distortions [Saha and Mookerjee (1996)] which is 
important in the case of alloys with size mismatch between components as in the case of 
Fe-Pt, Co-Pt and Ni-Pt. 

An important aspect in understanding the interplay between magnetism and order- 
ing in disordered transition metal alloys involves investigation of the influence of local 
environment, namely the short-range ordering (SRO) effect, on electronic and magnetic 
properties of these alloys. There have been determination of SRO parameters for different 
degrees of disorder using first principles techniques [Lu et al (1994), Staunton et al (1994), 
Johnson et al (1994)] or extraction of these parameters from experiments and analysis of 
their effect on electronic structure and properties [Borici-Kuqo et al (1998), Wolverton et 
al (1998), Abrikosov et al (1996)]. SRO for a disordered binary alloy AxBl-x is described, 
for example, by the Warren-Cowley parameter [Cowley (1950)]. In present chapter we 
have carried out charge-self-consistent calculations based on generalized ASR technique 
to examine the short range ordering effect in Fe-Pt, Co-Pt and Ni-Pt systems. The results 
show good agreements with available experimental vahies. 

Another important ingredient for proper description of electronic and magnetic struc- 
ture of these alloys is the relativistic effect due to presence of heavy mass element, Pt. All 
calculations described in this chapter are done with scalar relativistic corrections. The 
importance of relativistic effect has been explained in great detail in chapter 4 taking the 
example of phase stability of Ni-Pt alloy system. 

3.1 Resu l t s  and discuss ions  

3.1.i Lattice parameters 

In Table 3.1, we quote the values of equilibrium lattice parameters, obtained by mini- 
mizing the total energy with respect to the lattice parameters for L12 superstructures 
at 25 and 75% and L10 superstructure at 50% concentration of Pt in Fe-Pt, Co-Pt and 
Ni-Pt alloy systems with different choice of local (von Barth-Hedin (vBH) [von Barth and 
Hedin (1972)] and Vosko-Wilk-Nusair (VWN) [Vosko et al (1980)]) as well as non-local 
(Langreth-Mehl-Hu (LMH)[Langreth et al (1981)] and Perdew-Wang (PW) [Perdew and 
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Table  3.1: The equil ibrium latt ice parameters  in a.u. of FePt ,  CoP t  and  NiP t  systems in 

o rde red  structures wi th  various choices of exchange correlat ion functionals.  See text  for 

var ious abbreviations.  

x I vBH I VWN I LMH I PW I Expt. 

Fe l_~Ptx  

0.00 (BCC) 

(FCC) 

0.25(L12) 

0.50(Llo) 

5.28 

6.47 

6.71 

a = 7.16 

c = 6.94 

7.25 

5.30 

6.47 

6.91 

a = 7.18 

c = 6.94 

7.27 

5.36 

6.53 

6.99 

a = 7.22 

c = 7.02 

7.30 0.75(L12) 

C o l _ ~ P t x  

5.54 

6.63 

7.21 

a -  7.46 

c = 7.26 

7.54 

5.406 [Pearson (1958)] 

6.877 [Pearson (1958)] 

7.049 [Kashyap et al (1995)] 

a = 7.253 [Pearson (1958)] 

c = 7.020 [Pearson (1958)] 

7.313 [Podg6rny (1991, 1992)] 

0.00 (hex) 

(FCC) 

0.25(L12) 

0.50(Llo) 

0.75(L12) 

a = 4.65 

c = 7.48 

6.55 

6.78 

a = 7.14 

c = 6.78 

7.21 

a--- 4.66 

c = 7.49 

6.56 

6.80 

a = 7.14 

c = 6.78 

7.22 

a = 4.70 

c = 7.59 

6.63 

6.86 

a = 7.18 

c = 6.86 

7.25 

4.83 

7.78 

6.81 

7.06 

a = 7.40 

c = 7.08 

7.50 

4.728 [Pearson (1958)] 

7.675 [Pearson (1958)] 

6.684 [Pearson (1958)] 

6.923 [Kashyap et al (1999)] 

a = 7.204 [Pearson (1958)] 

c = 7.007 [Pearson (1958)] 

7.240 [Pearson (1958)] 

N i l - x P t x  

0.00 (FCC) 
0.25(L12) 

0.50(Llo) 

0.75(L12)  

1.00 (FCC) 

6.54 

6.77 

a = 7.16 

c = 6.63 

7.20 

7.37 

6.55 

6.78 

a = 7.16 

c = 6.64 

7.21 

7.38 

6.61 

6.84 

a = 7.18 

c = 6.74 

7.24 

7.40 

6.80 

7.05 

a = 7.42 

c = 6.96 

7.49 

7.66 

6.646 [Pearson (1958)] 

6.890 [Pisanty et al (1990)] 

a = 7.209 [Pearson (1958)] 

c = 6.769 [Pearson (1958)] 

7.251 [Pisanty et al (1990)] 

7.400 [Pearson (1958)] 
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Wang (1986)]) exchange correlation potentials. The non-local exchange correlation po- 
tentialS seem to decrease overbinding and predict larger equilibrium lattice parameters 
than the local ones. The PW seems to go overboard and give estimates of the equilibrium 
lattice parameters which are larger than the experimental values. The best agreement 
with experiment is found to be LMH. 

3.1.2 Magnetism of Fe-Pt alloys 

Ordered alloys : 

In Table 3.2, we show results for two sets of calculations for magnetic moments in or- 
dered Fe-Pt alloys. In first set of calculations, we have calculated local as well as average 
mag-netic moments corresponding to the theoretically estimated lattice parameters ob- 
tained via energy minimization procedure. In second set, calculations were done using 
experimental lattice parameters. 

For Fe3Pt alloy in L12 super-structure the use of non-local exchange correlation func- 
tionals LMH appear to give better agreement with experimental values [Kashyap et al 
(1995)] for local and average magnetic moments as compared to local exchange correla- 
tion functionals. This holds good for both the choices of lattice parameters. The results 
for average and local magnetic moments from previous works by Kashyap et al (1995) and 
PodgSrny (1991, 1992), both using TB-LMTO, are in agreement with our corresponding 
results as can be seen from Table 3.2. The differences seen with these results are primarily 
due to different computational details. Both these authorshave used frozen core approx- 
imation in their calculations without taking into account of f states for Pt. Podgorny 
and Kashyap et al in their calculations used 286 and 84 k points in the irreducible part 
of the Brillouin Zone (BZ) respectively. On the other hand, our calculations are all elec- 
tron calculations taking a spdf minimal basis for Pt and using 969 k points in irreducible 
part of BZ. The local magnetic moment on Pt sites obtained by Hasegawa and Kanamori 
(1971) using augmented plane wave (APW.) method is in exact agreement to the corre- 
sponding experimental value though their average magnetic moment and local magnetic 
moment on Fe sites are lower (by 0.20 #B for average and 0.15 ~t B for Fe sites) than the 
corresponding experimental estimates [Kashyap et al (1995)]. Our calculation using the 
vBH functional for the exchange correlation potential and theoretically estimated lattice 
parameter leads to the conclusion of a non-magnetic ground state which is in agreement 
with that found in a previous study by Uhl et al (1994). This once again emphasizes that 
magnetic moments are very sensitively dependent on the particular exchange-correlation 
functional used and the detailed accuracy of the numerical calculations. 
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Table 3.2: The local and average magnetic moments of Fe-Pt system in ordered structures 
with various choices of exchange correlation functionals. 

conc. 

of Pt 

O.O0(BCC) 

XC used/Expt/ 
Ref. 

magnetic moment (#B/atom) of 
with eq. lat. par. with expt. lat. par. 

FelPtlav. F lPt I 
2.25 
2.30 
2.33 
2.35 
2.22 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
(Expt.) [Lide (2000)] 

2.15 
2.21 
2.29 
2.55 

0.25(L12) vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
(vSH) [Kashyap et al (1995)] 
(VWN) [PodgSrny (1991, 1992)] 
[iasegawa and Kanamori (1971)] 
(Expt.) [Kashyap et al (1995)] 

0.00 
2.46 
2.63 
2.78 

2.51 

0.00 
0.29 
0.33 
0.35 

0.26 

0.00 
1.92 
2.06 
2.17 

1.95 

2.57 
2.64 
2.70 
2.68 
2.56 

2.50 
2.70 

0.32 
0.34 
0.35 
0.37 
0.26 

0.50 
0.50 ! 

2.01 

2.06 

2.11 

2.10 

1.99 

2.0 
2.15 

0.50(L10) vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Osterloh et al (1994)] 
(VWN) [PodgSrny (1991, 1992)] 
(Expt.) [Osterloh et al (1994)] 

2.73 
2.79 
2.88 
3.01 

2.85 

0.35 
0.35 
0.35 
0.36 

0.30 

1.54 
1.57 
1.61 
1.69 

1.57 

2.81 
2.85 
2.90 
2.86 
2.92 

2.80 

0.35 
0.35 
0.35 
0.36 
0.38 

1.58 

1.60 

1.63 

1.61 

0.77 

0.75(L12) 
FM 

AFM 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[PodgSrny (1991, 1992)] 
[Wohyama et al (1989)] 
vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[PodgSrny (1991, 1992)] 
[Tohyama et al (1989)] 
(Expt.)[Kulikov et al (1985)] 

2.99 
3.12 
3.19 
3.24 
3.22 

3.11 
3.17 
3.24 
3.31 
3.46 

0.31 

0.32 

0.34 

0.39 

0.34 

0.15 
0.15 
0.15 
0.17 
0.16 

0.98 
1102 
1.05 
1.11 
1.06 

3.10 
3.15 
3.20 
3.12 

4.21 
3.16 
3.20 
3.25 
3.18 

4.13 
3.3 

9.32 
9.33 
0.34 
0.37 

0.33 
0.15 
0.15 
0.16 
0.16 

0.00 

1.02 
1.03 
1.06 
1.06 
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For FePt alloys the local magnetic moment of Fe site in L10 superstructure calculated 
using vBH exchange correlation potential and experimental lattice parameter shows clos- 
est agreement with experimental value [Osterloh et al (1994)]. The LMH based estimates 
of the local magnetic moment on Fe sites are rather large as compared with the available 
experimental data [Osterloh et al (1994)]. The experimental value for local magnetic mo- 
ment of Pt  in this concentration is not available. The experimentally estimated average 
magnetic moment is significantly lower than that of the calculated values using both local 
as well as non local exchange correlations. However all the available theoretical estimates 
by different groups [Podghrny (1991, 1992), Osterloh et al (1994)] are significantly high, 
just  like ours as compared to the experimental estimate quoted by Osterloh et al (1994). 
The experimental result may be interpreted assuming the magnetic moment at the Fe 
and Pt sites to be arranged antiparallely giving rise to ferri-magnetic ground state. How- 
ever, we were unable to show any theoretical evidence for this and our calculations do 
predict a stable ferromagnetic alignment as pointed out by Osterloh et al (1994). As in 
the case of Fe3Pt, the slight difference between the values obtained by Podghrny (1991, 
1992) and by us is again due to the difference in the calculational details. In addition to 
using frozen core approximation and neglect of f states in Pt site, Podgorny has assumed 
the cubic crystal structure for FePt in L10 structure while in reality it is tetragonal. In 
our calculations, we have assumed the experimentally observed tetragonal structure. The 
local magnetic moments obtained by Osterloh et al (1994) using augmented spherical 
wave method are higher than ours as well as calculations by Podghrny (1991, 1992). 

The experimental ground state ordered magnetic phase FePt3 is antiferromagnetic. 
~Ve have carried out calculations on this alloy both in the ferromagnetic as well as the 
antiferromagnetic structures. We have found the total energy in the case of antiferromag- 
netic structure is indeed lower than that of ferromagnetic structure. In the ferromagnetic 
calculation, the local as well as average magnetic moment obtained by Podghrny (1991, 
1992) using VWN exchange correlation potential with theoretical estimates of lattice pa- 
rameter is in close agreement with our corresponding value. The calculated local magnetic 
moment on Fe sites by Tohyama et al (1989) using an empirical tight binding model is 
significantly higher than both ours and that of Podghrny (1991, 1992). Our calculated 
magnetic moment on Fe site for the antiferromagnetic structure using PW non local ex- 
change correlation with theoretically estimated lattice parameter is in closest agreement 
with the experimental value [Kulikov et al (1985)]. This is the one case where LMH 
underestimates the staggered magnetization. 
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Figure 3.1: Magnetic moments in disordered Fe-Pt alloy systems using two different 
configuration averaging methods namely augmented space recursion (ASR) and coherent 
potential approximation (CPA) as compared to available experimental values given in 
Landoldt series [Wijn (1986)]. 

Disordered alloys : 

In Figure 3.1, we compare our calculated disordered magnetic moments using augmented 
space recursion with the available experimental values taken from Landoldt series [Wijn 
(1986)] as well as with CPA calculations. The average magnetic moments agree quite well 
with the corresponding experimental values in all concentrations. The numerical values of 
local as well as average magnetic moments calculated using LMTO-CPA are in agreement 
with those obtained using the ASR. This shows that the single site approximation like 
CPA works well for the Fe-Pt disordered alloys. The average magnetic moments obtained 
by Hayn and Drchal (1998) using CPA matches well for most concentrations though they 
deviate a bit at low concentrations of Pt. Our calculations uses charge neutral spheres 
to reduce the effect of Madelung contribution whereas Hayn and Drchal (1998) have 
used equal Wigner Seitz radii of both constituents and the effect of Madelung due to 
charge transfer was taken into account using screened impurity model [Hayn and Drchal 
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Figure 3.2: Magnetic moments as a function of lattice parameters for 25% concentration 

of Pt in disordered Fe-Pt alloy. Circles and squares denote local magnetic moment on Fe 

site and Pt site respectively. Diamonds represent average magnetic moment. 

(1998)]. The local moment on the Fe sites increases towards the isolated Fe moment as the 

concentration of Pt increases. This is an indication of the fact that local environmental 

effects are unimportant and consequently the CPA and ASR results agree closely. 

In 25~ concentration of Pt there is invar effect which shows anomalies in the thermal 

expansion. We have observed two minima of total energy one with a high moment and a 

large lattice constant 6.93 au and the other with a zero moment and small lattice constant 

6.71 au. The total energy difference between the magnetic and non magnetic states is 2.4 

mRyd/atom which is higher than the calculations by Drchal et al (0.7 mRyd/atom) and 

lower than that of Staunton et al (15.7mRyd/atom). In Figure 3.2, we show the behaviour 

of magnetic moment as a function of lattice parameter which shows non magnetic to 

ferromagnetic transition at 6.71 a.u. Our calculated average as well as local magnetic 

moment on Fe and Pt sites corresponding to theoretically estimated lattice parameter 

(6.93 a.u.) on magnetic state are 1.89, 2.44 and 0.24 #u respectively. 

Table 3.3 summarizes the known experimental and earlier theoretical results on dis- 

ordered FePt with 25% Pt. Two reported experimental results in this case differ to each 

other. The localized components of the magnetic moments for Fe (2.03 + 0.02 #B) and 
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Pt  (0.34• 0.08 ~B) were estimated from spin polarized neutron diffraction measurements 
by Ito et al (1974) , while the magnetization measurements of Caporaletti and Graham 
(1980) indicated moments of 2.75 and 0.45 #B for Fe and Pt respectively. The values of 
average magnetic moments quoted in Landoldt series for different experiments are 2.02 
and 2.27 #B. The theoretical estimates based on different methods also differ between 
each other. These differences are mainly due to the differences in the computational 
details chosen in each framework and also different approximations being used in each 
method. 

Table 3.3: Various estimates of the local and averaged magnetic moments in Bohr- 
magnetons for disordered Fe75Pt25 alloy. 

Author Fe Pt Average 

Expt. [Ito et al (1974)] 2.03i0.02 0 .34i  0.08 1.61• 

Expt. [Caporaletti and Graham (1980)] 2.75 0.45 2.20 

Expt. (a)[Wijn (1986)] 2.02 

Expt. (b)[Wijn (1986)] 2.27 

LMTO-CPA [Hayn and Drchal (1998)] 1.81 

KKR-CPA [Major et el (2003)] 2.80 0.23 2.16 

LCAO-CPA [Koepernik et al (1997)] 2.17 

ASR (this work) 2.44 0.24 1.89 

For the 75% concentration of Pt  our estimate of the magnetic moment on Fe sites is 
higher than that measured by Kulikov et al (1985) (which is about 2#s). 

In order to check the possible short range order effect, we have checked the variation of 
total energy as a function of short range order and found that the total energy decreases 
as short range order goes from positive (segregation side) to negative (ordering side) 
confirming this system as an ordering system. In Figure 3.3 we show the variation of 
the magnetic moments as functions of the SRO parameter for 75% concentration of Pt. 
We find that both the local and average magnetic moments show an increasing tendency 
as the SRO parameters goes from the segregating to the ordering side. This is justified 
by the fact that the magnetic moment of Fe is enhanced when it is surrounded by Pt 
as we have seen in the ordered alloys. We therefore conclude that the discrepancy with 
the experimental data of Kulikov et al (1985) can not be due to the short range ordering 
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Figure 3.3: Variation of magnetic moments as a function of short range order parameter 
(a)  for 75% in Fe-Pt system. Circles, squares and diamonds denote the local magnetic 
moments on Fe sites, on Pt sites and average magnetic moments respectively. 

effect, probably the other possible factors influencing the experimental results need to be 
considered. 

3.1.3 Magnetism in Co-Pt alloys 

Ordered alloys : 

Table 3.4 shows the calculated and experimental magnetic moments for ordered Co-Pt 
alloys. No experimental result is available for 25% of concentration of Pt in ordered case. 
The local as well as  average magnetic moments obtained by Kashyap et al (1999) using 
vBH exchange correlation potential with experimental lattice parameter are lower (by 
0.30 #s  for Co site, 0.01 #s  for Pt site and 0.23 #B for average) than our corresponding 
values which could be due to differences in computational details as mentioned in the case 
of Fe-Pt. The local as well as average magnetic moments obtained by Kootte et al (1991) 
using localized spherical wave method using vBH exchange correlation and experimental 
lattice parameters are in agreement with our corresponding values. 

For 50% concentration of Pt, our results agree well with the previous theoretical 
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Table 3.4: The local and average magnetic moments of Co-Pt system in ordered structures 
with various choices of exchange correlation functionals. 

conc. / XC used/Expt/ 

of Pt J Ref. 

0.00 Hex. 
(FCC) 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW (this work) 
Expt. Hex. 
[Kootte et al (1991)] 

magnetic moment (#B/atom) of 
with eq. lat. par. with expt. lat. par. 

Co I Pt I av. 

1.60 (1.62) 
1.62 (1.64) 
1.64 (1.67) 
1.63 (1.66) 
1.58 [1.611 

cO ] Pt I av. 

1.55 (1.57) 
1.58 (1.60) 
1.62 (1.65) 
1.67 (1.70) 

0.25 
(L12) 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Kashyap et al (1999)] 
[Kootte et al (1991)] 

1.56 
1.63 
1.73 
1.80 

0.35 
0.37 
0.40 
0.39 

1.26 
1.32 
1.40 
1:45 

1.69 
1.73 
1.76 
1.74 
1.39 
1.64 

0.39 
0.40 
0.39 
0.41 
0.38 
0.36 

1.37 
1.40 
1.42 
1.41 
1.14 
1.32 

0.50 
(L10) 

0.75 
(L12) 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Kashyap et al (1999)] 
[Kootte et al (1991)] 
[Vba et aZ (2OOl)] 
Expt.[Kootte et al (1991)] 
Expt.[Kootte et al (1991)] 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Kashyap et al (1999)] 
[Kootte et al (1991)] 
[Tohyama et al (1989)] 
[Lange et al (1998)] 
[Uba et al (2001)] 
Expt.[Kootte et al (1991)] 
Expt.[Lange et al (1998)] 

1.69 
1.74 
1.82 
1.91 

1.71 
1.75 
1.83 
1.95 

1.72 

0.38 
0.39 
0.40 
0.42 

0.25 
0.26 
0.28 
0.36 

1.03 

1.07 

i . i i  

1.16 

0.62 

1.79 
1.83 
1.87 
1.83 
1.85 
1.69 
1.60 
1.70 
1.60 

1.74 

0.25 

0.63 

0.67 

0.76 

0.62 

1.82 

1.87 

1.82 

1.85 

1.69 

2.88 

1.74 
1.64 

0.38 
0.39 
0.39 
0.40 
0.38 
0.37 
0.30 
0.25 
0.30 

0.26 
0.27 
0.28 
0.31 
0.25 
0.27 
0.38 

0.24 
0.26 

1.09 

I.ii 

1.13 

1.12 

1.12 

1.03 

0.98 

0.95 

0.64 

0.65 

0.68 

0.69 

0.65 

0.63 

0.61 
0.70 
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results [Kashyap et al (1999), Kootte et al (1991), Uba et al (2001)] within the errorbars 
of different calculational schemes and are in reasonable agreement with the observed 
magnetic moments [Kootte et al (1991)] as summarized in Table 3.4. 

For 75% concentration of Pt, the calculated local magnetic moments on Co site and 
that  of average magnetic moments using possible exchange correlations with both theoret- 
ically estimated as well as experimental lattice parameters are on higher side as compared 
to the experimental estimates [Kootte et al (1991)]. The calculated local moment of 
Pt  using vBH exchange correlation and theoretically estimated lattice parameter is close 
to the experimental value [Kootte et al (1991)]. The theoretical estimates for local as 
well as average magnetic moments by Kashyap et al (1999) and Kootte et al (1991) as 
in 50% concentration of Pt are in agreement with our corresponding estimates as can 
be seen from Table 3.4. The slight differences seen are again due to the differences in 
computational details. The local magnetic moments calculated by Tohyama et al (1989) 
using tight-binding method are siguificantly higher than ours as well as experimental es- 
timates which can be seen from Table 3.4. The recent work by Lange et al (1998) using 
fully relativistic TB-LMTO with vBH exchange correlation and theoretically estimated 
lattice parameter report the local as well as average magnetic moment close to our cor- 
responding values. Their experimental value for average magnetic moment matches with 
our corresponding calculated value using non local exchange correlation potentials and 
experimentally estimated lattice parameter. The supercell calculation of Uba et al (2001) 
with LMTO using vBH exchange correlation potential and experimental lattice parameter 

matches well with our corresponding value. 

Disordered alloys : 

In Figure 3.4, we show the comparison of local magnetic moments of Co and Pt as well 
as average magnetic moment of disordered Co-Pt system. Calculations have been done 
both within ASR and CPA schemes using vBH exchange correlations. The comparison 
with experimental results for average magnetic moment taken from Landoldt series [Wijn 
(1986)] matches well with our calculations. The calculated magnetic moments with aug- 
mented space recursion method are in better agreement with experimental results than 
that of coherent potential approximation method. From this Figure we can see that the 
local moment of Co obtained by ASR calculation is almost constant with the increase 
of concentration of Pt  which is the signature of weak local environmental effect on Co 
site. This finding is in agreement with that of Sanchez et al (1988) who also pointed 
out almost constant magnetic moment at Co site as a function of Pt concentration. The 
average magnetic moments obtained by Koepernik et al (1997) using linear combination 
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of atomic orbitals combined with coherent potential approximation (LCAO-CPA) method 
taking into account both diagonal and off diagonal disorder effects show close agreement 
with our results (except 20% concentration of Pt where the value obtained by Koepernik 
et al (1997) is in higher side than ours) using augmented space recursion (ASR). 
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Figure 3.4: Magnetic moments in disordered Co-Pt alloy systems using two different 
linearized muffin-tin orbital (LMTO) based configuration averaging methods namely aug- 
mented space recursion (ASR) and coherent potential approximation (CPA) as compared 
to available experimental values given in Landoldt series [Wijn (1986)]. CPA-LCAO and 
KKR-CPA denote coherent potential approximation based linear combination of atomic 
orbitals method of Koepernik et al (1997) and Korringa Kohn Rostoker coherent potential 
approximation method of Ebert et al (1992) respectively. 

The results obtained by Ebert et al (1992) using Korringa-Kohn-Rostoker coherent 
potential approximation (KKR-CPA) are higher than ours as well as experimental values. 
The calculations by Ebert et al (1992) using KKR-CPA with single site approximation 
were though fully relativistic did not take into account lattice relaxation and off diagonal 
disorder effects. Therefore it is not surprising that our calculations show better agreement 
with experiments. According to the calculation of Shick et al (1996) using fully relativis- 
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tic linearized muffin-tin orbital based coherent potential approximation (LMTO-CPA) 

method the average and partial magnetic moments of Co and Pt in CosoPt~0 are 1.07, 

1.79 and 0.35 #B respectively while the value of Ghosh et al (2001) using ASR are 1.05, 

1.85 and 0.24 PB for the same. Our values in this case are 1.05, 1.80 and 0.29. The reason 

behind the differences seen in between LMTO-CPA of Shick et al (1996) and ASR is again 

same as explained above in the connection with KKR-CPA and ASR. Though the calcu- 
lations by Ghosh et al (2001) (using theoretically estimated lattice parameter) and ours 

(using experimental lattice parameter) used same ASR method, ours being charge neutral 

and self consistent show better agreement for local magnetic moments with corresponding 
charge neutral and self consistent calculations. 

In order to investigate the possible influence of short range order on the disordered 

magnetic moments, we have performed a complete investigation in terms of the total 

energy calculations as a function of short range order parameter. Like Fe-Pt, Co-Pt 

also shows a tendency to order. We find that short range order has very little effect on 
magnetism. As for example in Figure 3.5, we show the variation of magnetic moments 
with respect to short range order for 20 and 80% concentration of Pt. This indicates 

almost constant magnetic moment as a function of short range order. 
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Figure 3.5: Variation of magnetic moments as a function of short range order parameter 

(o~) in Co-Pt systems. Circles, squares and diamonds denote the local magnetic moments 

on Co sites, on Pt sites and average magnetic moments respectively. 
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Table 3.5: The local and average magnetic moments of Ni-Pt system in ordered structures 
with various choices of exchange correlation functionals. 

Concentration 
of Pt 

O.O0(FCC) 

0.25(L12) 

0.50(L10) 

0.75(L12) 

XC used/Expt/ 
Ref. 

vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
Expt. [Lide (2000)] 
vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Singh (2003)] 
[Expt.] 
[Parra and Cable (1980)] 
vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Singh (2003)] 
[Expt.] 
[Parra and Cable (1980)] 
vBH(this work) 
VWN(this work) 
LMH(this work) 
PW(this work) 
[Singh (2003)] 

magnetic moment (#s/atom) of 
with eq. lat. par. with expt. lat. par. 

average 

0.43 
0.47 
0.53 
0.63 
0.50 

0.00 
0.05 
0.41 
0.53 
0.44 

0.18 
0.20 
0.22 
0.28 
0.22 

average 

0.49 
0.52 
0.56 
0.56 

0.43 

0.25 
0.34 
0.48 
0.48 

0.22 

0.21 
0.22 
0.24 
0.24 

3.1.4 M a g n e t i s m  in Ni, P t  alloys 

Ordered alloys : 

In Table 3.5, we show results of two sets of ordered calculations in Ni-Pt alloys using 
possible local as well as non local exchange correlation potentials one with theoretically 
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calculated lattice constants via energy minimization procedure and other using experi- 
mental lattice parameters. 

For 25% concentration of Pt, the calculated local as well as average magnetic mo- 
ments in ordered Ni-Pt alloys obtained using vBH local exchange correlation potential in 
theoretically calculated lattice .parameter show very good agreement with experimental 
values [Parra and Cable (1980)]. The values obtained by Singh (2003) in the same case 
are higher in comparison to ours and experimental estimate [Parra and Cable (1980)]. 
Singh (2003)'s calculations seemingly did not include the f states in Pt  in the TB-LMTO 
basis. Our test calculations without including f states of Pt also show higher values of 
magnetic moments for this concentration of Ni-Pt alloy. 

For 50% concentration of Pt in L10 structure calculated local as well as average mag- 
netic moments using vBH exchange correlation potential with the use of experimental 
lattice parameter is closest to the experimental estimate [Parra and Cable (1980)]. Our 
calculations with the use of local exchange correlations and theoretically estimated lattice 
parameters lead to non magnetic ground state which is in agreement with that found in 
previous study by Dahmani et al (1985). In our calculations we have taken into account 
the tetragonal distortion as in the case of Fe-Pt and Co-Pt alloys in L10 structure. 

For 75% concentration of Pt, for NiPt3 alloy in L12 structure there is no experimental 
result available. For this concentration we have got higher local magnetic moment of 
Ni than at the 50% concentration of Pt. This was obtained while using local exchange 
correlations. In this case if we use non local exchange correlations then we get the decrease 
of local magnetic moment of Ni on going from 50% to 75% concentration of Pt. The 
average as well as local magnetic moments on Pt sites show the decreasing tendency 
using both local as well as non local exchange correlations with theoretically as well as 
experimentally estimated lattice constants. 

The calculations by Singh (2003) using vBH exchange correlations and theoretically 
estimated lattice parameters show that the local magnetic moment of Ni increases while 
going from 25% to 50% and decreases while going from 50% to 75% concentration of 
Pt .  The calculations by Singh (2003) did not take into account the tetragonal distortion 
for 50% concentration of Pt  which means putting lattice parameters a = c which is not 
the right ground state structure. For a test we also repeated our calculation without 
taking into account the tetragonal distortion for 50% concentration of Pt  using vBH local 
exchange correlation potentials and theoretically estimated lattice constants and we also 
observed same trend as Singh obtained. However, for the calculation taking into account 
the degrees of freedom for tetragonal distortion we found that the magnetic moments 
vanish with the use of local exchange correlation potentials in theoretically estimated 
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lattice parameters. 
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Figure 3.6: Magnetic moments in disordered Ni-Pt alloy systems using two different 
configuration averaging methods namely augmented space recursion (ASR) and coherent 
potential approximation (CPA) as compared to experimental values given by Parra and 
Cable (1980). ASR (SRO) denotes the results taking short range ordering effect into 
account. 

0,7 

Disordered alloys : 

We have plotted the local and average magnetic moments of disordered Ni-Pt system in 
Figure 3.6. The comparison of calculated disordered magnetic moments using augmented 
space recursion (ASR) method with vBH exchange correlation potentials and experimental 
lattice parameter matches well with experimental values [Parra and Cable (1980)] in 
all concentrations except 55% and 57% of Pt. Our calculations of magnetic moments 
using coherent potential approximation (CPA) method using vBH exchange correlation 
potential and experimental lattice parameters are very different than the calculations 

using ASR method and experimental estimates [Parra and Cable (1980)]. Using CPA the 
local magnetic moments of Ni donot even follow the trend of corresponding experimental 

estimates. ASR being capable to go beyond single site approximation taking into account 

lattice relaxation and off diagonal disorder effect which is very important in NiPt alloys 

provides better agreement with experiment than CPA. Our calculated values for 55% 

and 57% concentration of Pt using ASR method are in higher side in comparison to the 

experimental estimates which leads us to suspect the presence of short range ordering 

effect. We performed calculations incorporating short range order for all concentration of 
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Pt  in this system and found that the magnetic moments of Ni decreases by appreciable 

fraction for 55% and 57% concentration of Pt. The moment of Pt increases slightly. 
These give rise to the decrease of average magnetic moment in these concentrations: 
Calculations incorporating the effect of short range order agrees well with experimental 
estimate of Parra and Cable (1980). 

3.2 Summary 

To summarize, our study for ordered alloys to investigate the role played by different 

possible exchange correlation functionals shows that choice of the exchange-correlation 

potential has considerable effect on the values of the equilibrium lattice constants as well 
as magnetic moments. 

The present study on disordered alloys shows that the single site approximation based 

methods work reasonably well for Fe-Pt systems and is in close agreement with our ASR 
predictions. For the Co-Pt system, the CPA begins to deviate from the ASR. CPA based 

calculations show slight increase in the local magnetic moment of Co with increasing Pt 

concentration, while the ASR shows almost constant behaviour. 

It is in the Ni-Pt alloy that CPA shows the largest deviation from the ASR. The CPA 

estimates of the magnetic moments are quite different from the experimental values. It 

predicts increase of the local magnetic moment on Ni with increasing Pt concentration, 

whereas experimentally the reverse behaviour is observed. In the absence of local en- 

vironment effects, increase of Pt concentration in Ni-Pt should lead to increase in the 
local Ni moment, since isolated clusters of Ni in Pt become more probable. This leads to 
narrowing of the local density of states on Ni and consequently according to the Stoner 

picture, an increase in the local Ni moment. Finally in the dilute limit, this local moment 
should approach the moment of an isolated Ni atom. This behaviour is certainly seen in 

Fe-Pt alloys. However, the fragile moment on Ni seems to need at least 50% Ni atoms 
in its nearest neighbour environment, otherwise it loses its local moment. This is indeed 

what one sees in experiment and is a strong indicator of large local environmental effect 
in Ni-Pt. The CPA predicts increase of the local magnetic moment on Ni with increasing 
Pt concentration. This is expected, since the CPA does not take into account the effect 

of local environment. The ASR, however, predicts the correcttrend with increasing Pt 

concentration. The estimates of the actual value of the local magnetic moments are also 

much better. 

Our total energy calculation as a function of short range order confirms the ordering 

tendency in these systems. The calculation of magnetic moments as a function of short 
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range order shows that its effect is small on the magnetism in Fe-Pt and Co-Pt disordered 
alloys but significant on the magnetism of disordered Ni-Pt. 

Finally, the numerical details of calculations, convergence with the number of k-points 
in the Brillouin zone integrations, choice of atomic sphere radii, proper convergences in 
the the ASR, the proper choice of the minimal basis set in the TB-LMTO, all of these 
affect the actual values of the estimated magnetic moments. 



C h a p t e r  4 

Study of phase stability in NiPt systems 

In the present chapter we focus on the application of the augmented space recursion 
method for phase stability study in Ni-Pt alloys. This system of alloys is of importance 
because of the possible need for relativistic corrections due to the heavy mass of Pt as well 
as the effects due to charge transfer and size mismatch between Ni and Pt. This therefore 
forms a perfect candidate for testing the applicability and limitations of our formalism, 
bringing in the relative importance of various effects for the accurate description of phase 
formation in this system. All calculations have been done in the nonmagnetic phase 
of Ni-Pt alloys. The phase diagram of this [Dahmani et al (1985)] alloy system shows 
that  the magnetic transition temperature is below the Chemical order-disorder transition 
temperature. Considering the fragile magnetic moment of Ni, one would therefore expect 
the influence of magnetism to be negligible on the chemical order in this system. 

The previous studies of ordered and substitutionally disordered NiPt alloy systems 
have shown the importance of inclusion of relativistic effects. Treglia and Ducastelle 
(1987) had shown that late transition metal alloys should exhibit phase separating ten- 
dencies but they argue that the exceptional ordering behavior of NiPt is due to the 
relativistic corrections. In a first principle study, Pinski et al (1991, 1992) found that the 
disordered fcc Nil_xPt~ alloy at x -- 0.5, calculated by means of the single site KKR- 
CPA, becomes unstable at low temperatures, to a perturbation by a < 100 > ordering 
wave and concluded that the corresponding long range ordered state (LRO) i.e. the L10 
structure should be the predicted ground state for which the large size mismatch between 
Ni and Pt  plays the main role and the effect of relativity can be neglected. However, Lu 
et al (1991, 1992) pointed out that a local ordering tendency determined by perturbation 
analysis, doesn't necessarily predict the correct LRO ground state if the size mismatch of 
the two elements is large, as is the case for Ni and Pt and concluded that relativity is the 

rhe contents of this chapter has been published in Durga Paudyal, T. Saha-Dasgupta and A. Mook- 
erjee, J. Phys.: Condens. Matter 15 1029 (2003) 
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sole reason for long range order in NiPt. The work of Singh et al (1993) demonstrated 
that  the relativistic effects do stabilize the ordered structures over the disordered solid 
solution. Recently Ruban et al (2002) have studied the problem of phase stability in NiPt 
alloy system based on ordered calculations with the inclusion of Madelung energy with 
multipole corrections. In this chapter, we examine the relativistic treatment of the Hamil- 
tonian and charge transfer and lattice relaxation effects on the electronic structure and 
phase stability of face-centered cubic NiPt system at 25%, 50% and 75% of concentration 
of Pt .  As mentioned already, the augmented space recursion (ASR) technique, which we 
use here, is capable of taking into account environmental effects, effects of short range or- 
der and local lattice relaxation effects due to size mismatches. To circumvent the p.roblem 
of calculation of Madelung energy contribution for disordered system, we have used the 
appropriate effective atomic sphere radii for each of the constituents so that the spheres 
are neutral on the average and this has been done with precision at each concentration 
[Kudrnovsk~ and Drchal (1990)]. We have shown that without inclusion of relativistic 
effects the formation energy comes out to be positive which contradicts experimental re- 
sults. With the scalar relativistic corrections, involving mass-velocity and Darwin terms, 
the formation energy comes out negative indicating that the relativistic effects play an 
important role in NiPt alloys in agreement with earlier studies. We find that the charge 
transfer effects have also an important role to play in deciding on the correct ground state 
structure, particularly when the concentration of Pt  is high. Our study on transition 
temperatures based on a mean field theory could reproduce the qualitative experimental 

trends. 

4.1 Resu l t s  and discussions 

We have applied our formalism discussed in Chapter 2 in calculating the effective pair 
potentials for the FCC based NiPt alloys for concentrations x -- 0.25, 0.5 and 0.75 of Pt. 
The calculation of the effective pair potentials has been restricted up to fourth nearest 
neighbour interactions. Total energy density functionM calculations were performed at 
the  concentration x = 0.25, 0.5 and 0.75 of Pt. The Kohn-Sham equations were solved 
in the local density approximation (LDA). The LDA was treated with in the context of 
tight binding linear muffin tin orbitals (TB-LMTO) in the atomic sphere approximation 
(ASA). The calculations were performed non relativistically as well as scalar relativis- 
tically and the exchange correlation potential of Von Barth and Hedin was used. We 
have theoretically calculated lattice constants via energy minimization procedure in both 
nonrelativistic as well as scalar relativistic cases and used them in the corresponding cal- 
culations of formation energies as well as pair interactions in these alloy systems. Two sets 
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of calculations were performed, one with the same Wigner-Seitz radius (charged spheres) 
for Ni and Pt. In the other set we followed the procedure introduced by Andersen et al 
(1987, 1992) and extended by Kudrnovsk~ and Drchal (1990), which allows us flexibility 
in the choice of ASA radii for the constituents. The idea is to choose ASA radii of atomic 
species in such a way that the spheres are charge neutral on the average. The potential 
parameters A[ and 7[ of the constituent I were then scaled by the factors (SI/sall~ 2l+1 
to account for the fact that the Wigner-Seitz radius of constituent I, J ,  is different from 
that  of the alloy, s au~ These potential parameters were used to parameterize the alloy 
Hamiltonian. For the purpose of augmented space recursion, seven shell map was gener- 
ated and thirty five seed energy point recursion was performed, as explained in Chapter 
2, to calculate the Fermi energy with the second order LMTO-ASA Hamiltonian through 
the recursion method using eight level of recursion and analytical terminator of Luchini 
and Nex. For the effective pair potentials, we used the orbital peeling method within the 
frame work of ASR for the calculation of peeled averaged Green function described in 
detail in Chapter 2. 
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Figure 4.1: Formation energy vs concentration of Pt with the choice of neutral charge 

spheres. 

In Figure 4.1 we have shown the formation energy of NiPt alloy system with various Pt 
concentrations based on ordered calculations. It shows that without inclusion of relativis- 
tic effects the formation energy comes out to be positive which contradicts experimental 
results. With the inclusion of scalar relativistic corrections the formation energy comes 
out to be negative. This indicates that relativistic effects play an important role in the 
stability of NiPt alloys, in agreement with earlier studies. Our results are in closer agree- 
ment with previous works based on the Full-Potential LMTO and the Connolly-Williams 
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Table 4.1: Formation energies for NixPtuwith the choice of neutral charge spheres includ- 
ing scalar relativistic corrections. The values in brackets are without relativistic correc- 
tions. The corresponding estimate for charged sphere calculations are shown with *'s. 
** refers to calculations without combined correction. *** refers to disordered formation 
energy. 

Y 

0.25 

0.50 

0.75 

Reference Formation energy in mRyd/atom 
SR (NR) 

this work 
this work 

Expt.[Amador et al (1993)] 
FPLMTO § CWM[Amador et al (1993)] 

LMTO[Amador et al (1993)] 
LMTO + CWM [Ruban et al (1995)] 

this work 
this work 

Expt.[Amador et al (1993)] 
FPLMTO + CWM[Amador et al (1993)] 

LMTO[Amador et al (1993)] 
LMTO + CWM [Ruban et al (1995)] 

KKR-ASA[Singh et al (1993)] 
KKR-ASA[Singh and Gonis (1994)] 

KKR-CPA[Singh et al (1993)] 
this work 
this work 

Expt.[Amador et al (1993)] 
FPLMTO + CWM[Amador et al (1993)] 

LMTO[Amador et al (1993)] 
LMTO + CWM [Ruban et al (1995)] 

-7.5o(4.25) 
-7.59,(4.17)* 

-5.16 
-6.30 
-7.17 
-6.66 

-9.44(4.74) 
-9.02"(4.85)" 

-7.06 
-8.69 
-8.5 

-8.95 
-12.00"* 

-8.10 
-7.7*** 

-8.15(4.22) 
-3.97"(6.65)* 

-4.78 
-6.40 
-6.70 
-9.12 



Study of phase stability in NiPt systems 90 

technique [Amador et al (1993), Ruban et al (1995), de Fontaine (1994)] and with exper- 
imental estimate. Singh et al (1993) have also calculated the formation energy for 50% 

of Pt. Their results for the formation energy obtained from ordered calculations without 

combined correction deviates quite a bit from ours as well as other results based on the 

Fu11-Potential LMTO and the Connolly-Williams technique [Amador et al (1993), Ruban 

et al (1995), de Fontaine (1994)], which is presumably due to the neglect of the combined 
correction in reference Singh et al (1993). Singh and Gonis (1994) have also done the 
calculation with combined correction which shows better agreement. The full-potential 
methods are expected to provide better estimates than other methods. The full compari- 
son of present and previous available results on formation energies are compiled in Table 
4.1 

We next approached the problem from the disordered end. We started from a com- 
pletely disordered alloy and set up concentration wave fluctuations in it to see when 
this destabilizes the disordered phase as suggested by Khachaturyan (1978, 1983). The 
calculation of the lattice distortion for disordered alloys has been carried out within the 
structural model given by rigid ion structure (RIS) [Maw and Kudrno-csk~ (1986)] which 
is explained in Chapter 2. 

We have computed the effective pair potentials for two sets of potential parameters 
with charged and charge neutral spheres which are compared with available previous 
results in Tables 4.2 and 4.3. Figure 4.2 shows that the effective pair potentials for 
NiPt3 is very small in magnitude using potential parameters with charged spheres. We 
used these pair potentials to calculate the anti-phase boundary energy. The anti-phase 
boundary energy comes out to be negative for NiPt3 and NiPt indicating stability of DO22 
over L12 for NiPt3 and A2B2 over L10 for NiPt. Further we calculated the minima of the 
special points according to the prescription described in Chapter 2. In the case of NiPt3 
and NiPt shown in Figure 4.4, we could not get the minima at < 100 > which is not quite 
correct because experiments show NiPt3 has L12 and NiPt has L10 ordering. But in the 
case of Ni3Pt we could get the positive anti-phase boundary energy as well as minima at 
< 100 > correctly showing the ordering L12. In Figure 4.5 we have plotted the effective 
pair potentials as a function of energy relative to Fermi energy and number of neighboring 
shells with charge neutral potential parameters including scalar relativistic corrections 
which shows that the first nearest neighbor pair potentials are larger in magnitude than 
the second, third and fourth nearest neighbour pair potentials. With potential parameters 
from neutral sphere calculations including scalar relativistic corrections for NiPt3 and 
NiPt the anti-phase boundary energies come out to be positive and the minima of special 
points are at < 100 > correctly showing L12 and L10 orderings. If we use charge neutral 
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Table 4.2: The effective pair potentials for NiPt alloy system calculated with potential 
parameters taken from calculations with the choice of charged spheres and including scalar 
relativistic corrections. (O-L) refers to calculations without multipole corrections, M refers 
to calculations with multipole corrections and SCI to calculations with screened Coulomb 
interactions. US-PP refers to ultrasoft pseudo-potentials. * refers to non-relativistic 
calculations. 

Reference 

Present work 

Present work 

Singh et al (1993) 

Pinski et al (1991, 1992) 

Pourovskii et al (2001) 
CWM-ASA+M 

SGPM 

Ruban et al (2002) 
with SGPM 

ASA+M (O-L)(SCI) 
ASA (SCI) 

With Connolly Williams 
ASA+M 

ASA+M (O-L) 
ASA 

US(PP) 
Direct calculation(SCI) 

ASA+M 

T 
V1 V2 | V3 

(mRy/atom) (mRy/atom)I (mRy/atom) 
Concentrat ion of P t  -- 25% 

I 11.36 I -0.05 -0.07 
11.972, 0.015, 0.054, 

Concentrat ion of P t  = 50% 
7.832 
8.597, 

4.22 
4.94* 

0.114 
0.10, 

-0.129 
0.053* 

V4 

(mRy/atom) 

I -0.41 
0.046, 

9.4* 

5.00 
5.28 

14.05(15.44) 
12.26(14.35) 

12.68 
13.70 
14.33 
12.81 

1.14 
0.52* 

-0.057 
0.263, 

Present work 

0.8* 

0.25 
0.06 

0.32(-0.10) 
0.53(-0.15) 

1.31 
0.49 
0.28 
1.30 

12.45 0.47 
Concentrat ion of P t  = 75% 

2.785 0.236 [ 
3.813, 0.361, 

0.22 
0.32* 

0.4* 

0.19 
-0.82 

-1.09(-1.22) 
-1.31(-1.48) 

-0.02 
-0.86 
-1.72 
0.69 

-0.49 

-1.04 
-0.18" 

-0.2* 

-0.28 

-0.66 

-1.76(-0.84) 
-2.14(-0.98) 

-0.73 

-1.39 

-1.92 

-0.40 

-0.65 

-0.i16 0.276 

-0.175, 0.366, 
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Table 4.3: The effective pair potentials for NiPt alloys with potential parameters taken 
from calculations with the choice of charge neutral spheres including scalar relativistic 
corrections. The corresponding estimate for non relativistic calculations are shown with 
*~S. 

Reference V1 V2 V3 V4 

(mRy/atom) (mRy/atom) (mRy/atom) (mRy/atom) 
Concentration of P t  = 25% 

Present work 12.34 

13.08, 
-0.092 -0.046 -0.54 

-0.021, 0.152, -0.041, 
Concen t ra t ion  of P t  -- 50% 

Present work 

Singh et al (1993) 

Ruban et al (2002) 
Neutral(GPM) 

10.08 
10.111, 

16.02 
11.96, 

0.1 
0.126, 

1.34 
0.66* 

0.004 
0.246* 

0.06 
0.28* 

-0.24 
0.175, 

-1.58 
-0.46* 

5.49 1.22 0.01 -0.73 
Concentration of P t  - - 7 5 %  

Present work 8.9 0.26 0.1 0.02 
7.874, 0.297, 0.276, 0.34, 

potential parameters without including scalar relativistic effect the anti-phase boundary 
energies come out to be positive for Ni3Pt and NiPt but negative for NiPt3. This shows 
for NiPt3 both scalar relativistic as well as charge transfer effects play important role to 
predict correct ground state. 

So, we argue that on increasing the concentration of Pt atom the careful treatment to 
take into account of charge transfer effect becomes increasingly important. In Figure 4.3, 
we have also shown the effective pair potentials without scalar relativistic corrections. For 
NiPt3 it is clearly seen that the effective pair potentials with scalar relativistic corrections 
are larger in magnitude than the non relativistic ones. 

In Figure 4.5 we have plotted that the effective pair potentials vs concentration of Pt 
with charge neutral potential parameters including scalar relativistic corrections which 
shows that the first nearest neighbour effective pair potentials decrease with the increase 
of the Pt  concentration. Singh et al (1993) and Singh (1996) have also calculated the 
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Figure 4.2: (i) The effective pair potentials calculated with the choice of charged spheres 
including scalar relativistic corrections. 

effective pair potentials using KKR-CPA-GPM method. Their values of effective pair 
potentials are much larger than ours. They pointed out that due to the large values 
of effective pair potentials the ordering energy and ordering temperatures (transition 
temperatures) are much higher than that observed experimentally. Our estimates give 
rise to instability temperatures which are closer to the experimental results (shown in 
Figure 4.7). For example, our estimate for the instability temperature for the 50% alloy 
is 1683~ whereas the estimate from the KKR-CPA is around 2979~ The experimental 
estimates of the transition temperature is 950~ [Dahmani et al (1985)]. In KKR-CPA- 
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Figure 4.3: (i) The effective pair potentials as a function of energy, calculated with charge 
neutral potential parameters including scalar relativistic corrections. (ii) Comparison 
between the first nearest neighbour effective pair potentials with scalar relativistic cor- 
rections and without scalar relativistic corrections by taking charge neutral potential 
parameters. (iii) The effective pair potentials as a function of shell numbers with charge 
neutral potential parameters including scalar relativistic corrections. 

GPM method one considers only the single site approximation and one does not take 

into account any off diagonal disorder which may arise because of size mismatch of the 

constituent atoms. The ASR, on the other hand, as discussed earlier can do this with 

facility. Our test calculation for NiPt (50% concentration of Pt) without taking into 

account lattice relaxation due to size mismatch effect gives an estimate of instability 

temperature of 2363~ which is indeed higher than that of our original estimate with 

taking into account lattice relaxation due to size mismatch effect. The calculations of 

Pinski e$ al (1991, 1992) were carried out without scalar relativistic effects. Their values 

are consequently rather large as compared to ours. Ruban et al (2002) have calculated pair 
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Figure 4.4: The V (f~) surface for NiPt alloy system with potential parameters calculated 
with the choice of (i) charged spheres (ii) charge neutral spheres, on kz = 0 plane. The 
figures in inset show the enlarged view of the corresponding V (re) surfaces on kz = 0 

plane in the vicinity of the (I00) to (II0)' direction. 

potentials for 50% concentration of Pt using different methods and showed that different 
methods give different values of pair potentials. Their nearest neighbor pair-potential is 
slightly higher than ours. The effective pair potentials obtained by Pourovskii et al (2001) 
from the neutral charge spheres GPM method are similar to the estimates of Ruban et al 
(2002). 

In Figure 4.6 we have shown the ordering energy, anti-phase boundary energy and 
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Table 4.4: The anti-phase boundary energies, for Ni~Pty alloys from charged and neutral 
sphere calculations. The values in brackets are without relativistic corrections. 

concentration 

of Pt 

0.25 
0.50 
0.75 

APB energy (mRy/atom) 
Charged spheres Neutral spheres 

1.41(0.017) 
-0.402(-0.94) 

-1.804(-2.525) 

2.07(0.793) 
0.876(0.158) 
0.06(-0.553) 

o 

O 

15 

(i) 
15 

r r  
III..--....11 v2 
, e , - - , l ,  v3 
A - - - I v 4  

10 

5 

0 

(ii) 

r r  
il.-.-.--.m v2 
4t,- - -  ~, V3 

-'~ ~ 0:, ~ ~ ~ 0., %.2 0.3 0., ~ 0., ~ 0.~ 

Concent ra t ion  of  Pt 

Figure 4.5: The effective pair potentials vs concentration of Pt with the choice of potential 
parameters with (i) charged spheres including scalar relativistic corrections and (ii) charge 
neutral spheres including scalar relativistic corrections. 

instability temperatures vs concentration of Pt with charge neutral potential parameters 

including scalar relativistic correction. The ordering energy in all three cases Ni3Pt, NiPt 

and NiPt3 is negative showing the stability of ordered structures compared to disordered 

solution. Among all three concentrations, NiPt attains maximum value of ordering en- 

ergy which confirms that Llo in NiPt system is the most stable structure. The anti-phase 

boundary energy in all these cases Ni3Pt, NiPt and NiPt3 comes out to be positive show- 

ing the ordering structures LI2 for Ni3Pt, Llo for NiPt and LI2 for NiPt3 as described 
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Figure 4.6: Ordering energy, anti-phase boundary energy and instability temperatures 
vs concentration of Pt with the choice of charge neutral potential parameters including 
scalar relativistic correction. 

above. The magnitude of instability temperatures using the charge neutral potential pa- 
rameters comes out to be larger than the experimental transition temperatures. However, 
the qualitative trend of the change of the instability temperatures with changing con- 
centration of Pt comes out to be correct. Amador et al (1993) also reported the phase 
diagram (instability temperature vs concentration of Pt) of this system described by the 
nearest neighbour tetrahedron effective interactions from clusters with appropriate effec- 
tive volume. Their values for transition temperatures are smaller than ours but the trend 
is not same as experimental findings and ours. 

4.2 Summary 

Our total energy calculations for the ordered alloys indicate that in order to have the 
correct sign for the formation energy, it is essential to include relativistic corrections. Our 
analysis of the concentration wave approach indicates that for Ni3Pt neither relativistic 
correction nor the charge transfer effect is essential for the correct prediction of the L12 
ground state. For NiPt although scalar relativistic correction is not essential, careful 
treatment of charge transfer effect is a must to predict the correct ground state (Llo). 
For NiPt3 both these corrections are essential to predict the correct ground state Lle. 

Although it seems that qualitatively the relativistic corrections and charge transfer 
effect plays the essential role only for the high Pt content alloys, for quantitative prediction 
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of the instability temperature both these corrections are required across the concentration 
range. 

The main conclusions of this Chapter are : 

�9 We have demonstrated that for accurate prediction of the ground state structures 
and instability temperatures for alloys with components with large atomic size dif- 
ferences like NiPt, it is essential to take into account both relativistic corrections 
and averaged charge neutrality of the atomic spheres. 

�9 We have also demonstrated the augmented space recursion combined with the first- 
principles tight-binding linear muffin-tin orbitals (TB-LMTO) and the orbital peel- 
ing are both computationally feasible and suitable techniques for such studies as 
described above. 

These techniques will form the basis of our further study into similar alloy systems, but 
with magnetic effects included. 



C h a p t e r  5 

Phase stability analysis 
systems 

in Fe-Pt and Co-Pt alloy 

Study of alloy phase stability in general is complicated and modeling of all the relevant 
effects active in a particular alloy system is a challenge by itself. One needs to take into 
account systematically the effects like the on-site and off-site disorder, charge-transfer 
effect, the effect of local lattice distortions, the short range ordering effect, relevant for a 
~ven alloy system as already demonstrated in the case of Ni-Pt. For alloys with magnetic 
component, a further ingredient, namely magnetism is added to the problem. One might 
naively think that one needs to be concerned with magnetism only if one is interested in 
magnetic properties of materials. This is however not the case. Rather the formation of 
stable ordered structures can depend on properly taking into account magnetism, which 
can strongly effect the phase stability. The most illustrative example is that of the strong 
ferromagnet Ni-rich Fe-Ni alloys, where the ordering is entirely driven by magnetism 
and absence of spin-polarization in calculation leads to wrong ground state with phase- 
segregated rather than phase-ordered configuration [Ducastelle (1991)]. There are also 
many other magnetic alloy systems which are not so strong ferromagnets as in the case of 
Ni-rich Fe-Ni with completely full majority spin d-states but possess similar attributes. 

In our present study, we considered the problem of phase stability in Fe-Pt and Co-Pt 
alloys. We have already discussed at  length the electronic and magnetic properties of 
Fe-Pt and Co-Pt systems in Chapter 3. In this chapter we take the task of systematic 
first-principles study on chemical ordering tendency in these alloy systems. The phase 
diagrams of Fe-Pt [Stahl et al (2003)] and Co-Pt [Sanchez et al (1988)] alloy systems show 
that the magnetic transition temperature is below the chemical order-disorder transition 

fhe contents of this chapter has been published in Durga Paudyal, T. Saha-Dasgupta and A. Mook- 
erjee, J. Phys.: Condens. Matter 16 7247 (2004) 
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temperature in most part of the phase diagram except in the region of high concentration 
of Co (above 60~) in Co-Pt alloys. In this region one would therefore expect a strong 
influence of magnetism on the chemical order. In our approach, the magnetism part is 
dealt within Stoner theory with rigidly exchange-split, spin-polarized band. Within this 
approach the paramagnetic phase has "no exchange-splitting" and the magnetization in 

the paramagnetic phase is lost via Stoner particle-hole excitations. However, the other 

point of view of describing the paramagnetic phase could be that of the local-moment 

formation where the average over the local moment's orientations produce zero over- 

all magnetization but nevertheless there exists a local-moment disorder [Staunton et al 

(1997)]. Whether such description is necessary or not depends on the time-scale associ- 

ated with the rate of change of orientation of the local moments as compared to the time 

scale of electronic motion. Staunton et al (1997) have shown that consideration of such 

local moment formation can be important in describing properly the atomic short-range 

order data in FeV system. We are yet to explore the effect of such local moment forma- 

tions for the paramagnetic Fe-Pt and Co-Pt alloys. However our results obtained within 

Stoner approach already show reasonable agreement with experimental results, suggest- 

ing the necessity of inclusion of such effect in a second level. Our calculational scheme 

is that of augmented space recursion coupled with orbital peeling technique implemented 

within the framework of first-principles electronic structure calculation of TB-LMTO as 

the method of calculation of pair interaction energies. In particular, we have generalized 

our earlier technique to take into account of magnetic effects for the cases where the 

magnetic transition is higher than the order disorder chemical transition temperature as 

in the case of Co3Pt. Our scheme has been already proved to be efficient to handle the 

issues of off-diagonal disorder, large charge transfer effect, local lattice distortion which 

are important for alloys with large size mismatch between components and components 

with very different valences as is the case in Fe-Pt and Co-Pt. Due to the presence of the 

high-mass element Pt, relativistic effect also turn out to be crucial, which has been dealt 

within the scalar relativistic theory. We perform a thorough analysis of the phase stability 

in terms of pair interaction, effective pair potential surfaces, instability temperatures and 

atomic short range order maps. Our theoretical results obtained within this framework 

successfully reproduce the experimentally observed trends. 
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Table 5.1: Pair interaction energies upto fourth nearest neighbour in mRyd/atom. The 
values inside bracket in the case of 25% concentration of Pt in Co-Pt are with the magnetic 
contribution. 

Conc. V I I  V2 I V  3 V 4 
of Pt  (x) 

Fel_~Pt~ 
0.25 5.98[4.73]-0.12[-0.151 0.3910.15]-0.15[-0.331 
0.50 5.80 -0.15 0.28 -0.48 

0.75 4.14 -0.03 0.20 -0.13 

COl-~Ptx 
0.25 9.97[8.001 -0.11[-0.13] 0.2410.171 -0.30[-0.21] 
1, [4.06] [- 1.831 [0.391 [-0.22] 

0.50 8.04 -0.01 0.15 -0.12 
0.75 
2* 

7.07 
1.11 

0.08 
-2.27 

0.10 
0.33 

-0.18 
-0.93 

1, : Capitan et al (1999); 2, : Kentzinger et al (2000) 

5.1 Resu l t s  and  d i scuss ions  

5.1.1 Pair interaction energies 

The pair interaction energies calculated for 25, 50 and 75% concentration of Pt in Fe-Pt 
and Co-Pt alloy systems using above explained formalism are shown in the Table 5.1. In 
all cases we have obtained positive first nearest neighbour pair interaction energies which 
indicate the ordering tendency in these alloys in accordance with the experimentally 
predicted ordering tendencies. These calculations are carried out using experimental 
lattice parameters shown in Chapter 3. 

From the Figure 5.1 we see the increase in first nearest neighbour pair interaction en- 
ergies when one goes from Fe-Pt to Co-Pt. Figure 5.1 also shows the strong concentration 
dependence of pair interaction. 

For 25% concentration of Pt in Co-Pt alloys, we have included the effect of magnetism 
since the Curie temperature lies above the order disorder transition temperature in the 
experimental phase diagram [Sanchez et al (1988)]. The first nearest neighbour pair 
interaction energy calculated with the inclusion of magnetic contribution comes out to be 
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Figure 5.1: Plot of first nearest neighbour pair interaction energies ( V l )  in Fe-Pt and 
Co-Pt alloys showing the concentration dependence. 

lower than the corresponding value obtained without magnetic contribution. 

In the experimental phase diagram of Fe-Pt alloy system [Stahl et al (2003)], the 
magnetic transition temperature (Curie temperature) for Fe3Pt lies much below the order 
disorder chemical transition temperature. So it is not necessary to include the magnetic 
effect to study the chemical ordering problem. However to compare it with the Co3Pt case 
we have carried out the calculation for Fe3Pt alloy too. Our calculation shows the same 
trend as Co3Pt, namely the dominant V1 interaction decreases on including magnetic 

effect. 

In Figure 5.2, we show the density of states with and without magnetic contribution for 
25% concentration of Pt  in Co-Pt system. In magnetic case we see that the majority spin 
band almost full. The contribution to the pair interaction energy in this case mainly comes 
from the partially filled band. There is little decrease in the Fermi energy in magnetic 
case as compared to non magnetic case. This shifting of Fermi energy slightly reduces 
the pair interaction energy. The low value of first neighbour pair interaction energy in 
magnetic case is primarily due to the negative value of magnetic pair interaction energy 
between two Co atoms. 

In Figure 5.3, taking the example of 25% concentration of Pt in Co-Pt with magnetic 
contribution, we show the variation of pair interaction energy as a function of nearest 
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neighbour shells. The pair interaction energy decreases rapidly while going from first 
nearest neighbour to second nearest neighbour shell. For comparison we have also plotted 
the pair interaction energies extracted by Capitan et al (1999) from their experimentally 
measured short range order using inverse cluster variation method. Our calculated first 
and second nearest neighbour pair interaction energies are higher than that of Capitan et al 
(1999). But there is agreement in the third and fourth nearest neighbour pair interaction 
energies. Though there are differences in the first and second nearest neighbour pair 
interaction energies between Capitan et al (1999)'s and ours, the trend of pair interaction 
energy as a function of nearest neighbour shells is similar as is seen from the Figure 5.3. 
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Figure 5.2: Density of states and first nearest neighbour pair interaction energy as a 

function of energy in Co3Pt alloy system. 

The pair interaction energies extracted by Kentzinger et al (2000) from their experi- 
ment on short range order using inverse cluster variation method for 75% concentration 
of Pt in Co-Pt are tabulated in Table 5.1. Their first neighbour pair energy is lower in 
magnitude than that of second neighbour pair interaction energy. Our calculated pair 
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interaction energies instead follow usual trend of having higher magnitude of first neigh- 
bour pair energy than that of second neighbour pair energy. Though there is substantial 
difference in the trend of pair interaction energies, the instability temperatures computed 
using both sets of pair interaction energies turn out to be almost same as shown in the 
Section 5.1.3. 
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Figure 5.3: The calculated pair interaction energies as a function of shell numbers in 
Co3Pt as compared to experimental estimates of Capitan et al (1999). 

5.1.2 Effective pair potential surfaces 

The effective pair potentials V(k) calculated using pair interaction energies (T -- 0) for 
Fe-Pt and Co-Pt alloys at 25, 50 and 75% concentration of Pt are shown in the Table 5.2. 
These effective pair potentials were obtained by the Fourier transform of above explained 
first four nearest neighbour pair interaction energies. The values of V(k) for different 
ordering stars are compared in the Table 5.2. From the Table the minima are seen at 
the position < 100 >. These minima clearly show the L12 chemical ordering for 25 and 
75% and L10 chemical ordering for 50% concentration of Pt in these alloy systems. The 
value for V(100) increases when one goes from 25 to 50% and then decreases while going 
from 50 to 75% concentration of Pt in Fe-Pt alloys. In Co-Pt alloys The value for V(100) 
systematically decreases while going from 25 to 50 and then to 75% concentration of Pt. 
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Table 5.2: Effective potentials V< hkl >. The values inside bracket in the case of 25% 
concentration of Pt in Co-Pt are with the magnetic contribution. 

Conc. Expt. 
of Pt(x) ordering 

0.25 < 100 > L12 
0.50 
0.75 

0.25 
1$ 

< 100 > Llo 

V < 000 > V< 100 > 
Fel_xPtx 

V < 1}0 > i i i  V< ~ > 

78.60 -29.56 -20.44 -1.08 
69.66 -32.10 -19.34 -4.86 

< 100 > L12 52.74 

< 100 > L12 
< 100 > L12 

-19.90 
Col-xPtx 

121.14196.781 
[44.46] 

98.58 
85.56 
-3.54 

0.50 < 100 > L10 
0.75 < 100  > L12 

25 < 100 > L12 

-14.5 -1.38 

-46.06[-36.66] -36.98[-30.06] -2.94[- 1.74] 
[-32.98] [-15.90] [8.34] 
-34.86 -30.5 -1.38 

-26.60 
-2.62 

-30.76 
-31.86 

1, : Capitan et al (1999); 2, : Kentzinger et al (2000) 

-2.64 
2.46 

In 25 % concentration of Pt in Co-Pt alloy, the magnetic transition temperature is 
higher than the order disorder transition temperature. Therefore we have included the 
effect of magnetism in the chemical order in this particular alloy. The comparison of 
V(k) minima shown in the Figure 5.4 with magnetic contribution indeed matches with 
the minima obtained using the pair interaction energies extracted from the experimen- 
tally measured short range order parameters using inverse cluster variation method by 
Capitan et al (1999). This experimental measurement was done in ferromagnetic state. 
If we compare with the non-magnetic V(100) surfaces we see that there is decrease in 
the chemical ordering which indicates that the magnetism actually reduces the chemical 
ordering in this alloy allowing to order in lower temperature. As a comparison the "ar- 
tificiar' magnetic V(100) surface of Fe3Pt alloy system shows that taking into account 
the effect of V~ farther than first nearest neighbour, magnetism increases slightly the 
tendency to chemical order over that of the non magnetic case. 

The V(100) minima obtained for CoPt3 using our theoretically calculated pair in- 
teraction energies and that of extracted pair interaction energies from the experimen- 
tally measured short range order parameters using inverse cluster variation method by 
Kentzinger et al (2000) match well which is shown in Figure 5.5 The differences seen in 
the patterns of V(k) is due to the differences in individual pair interaction energies in real 
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space. Though there is difference in V(k) surface patterns, the value of V(100) minima 
in both cases are very similar. 

(i) (ii) 

~ . ~ ~  220 -20 ~ 220 
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Figure 5.4: Effective pair potential V(k) surfaces for CosPt alloy system in the (hk0) 
plane using our theoretically calculated pair interaction energies (i) without magnetic 
contribution and (ii) with magnetic contribution and (iii) using extracted pair interaction 
energies by Capitan et al (1999) from their experiment. 
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Figure 5.5: Effective pair potential V(k) surfaces for CoPt3 alloy system in the (hk0) 
plane using (i) our theoretically calculated pair interaction energies and (ii) extracted 
pair interaction energies by Kentzinger et al (2000) from their experiment. 

5.1.3 Instability temperatures 

Using the pair interaction energies obtained by us, we have calculated the instability tem- 
peratures in Fe-Pt and Co-Pt alloys within Khachaturyan's concentration wave approach 
as explained in Chapter 2. The results are shown in Figure 5.6. In Fe-Pt system the 
calculated order disorder transition temperatures are lower than that of corresponding 
experimental order disorder transition temperatures. We however clearly see the cor- 
rect trend of calculated instability temperature with experimentally predicted transition 
temperature. 
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Our calculation with the inclusion of effect of magnetism for 25% concentration of Pt in 
Co-Pt alloys shows the instability temperature closer to experimental order disorder tran- 
sition temperature than that of the calculated instability temperature with out magnetic 
effect. This is also in good agreement with the value obtained using the pair interaction 
energies extracted from the expe.rimentally measured short range order parameters using 
inverse cluster variation method by Capitan et al (1999). For 50% concentration of Pt 
our calculated instability temperature matches with the calculation by Staunton's group 
[Razee et al (2001)] using KKR-CPA based method. The calculated values of instability 
temperature are much higher than the experimentally predicted order disorder transition 
temperatures. The values of instability temperatures obtained by us and Staunton's group 
[Razee et al (2001)] and that of Sanchez's group [Kentzinger et al (2000)] (using extracted 
pair interaction energies upto fourth nearest neighbour from the experimentally measured 
short range order parameters using inverse cluster variation method) for 75% concentra- 
tion of Pt are almost similar and slightly lower than the experimental predictions of order 
disorder transition temperatures. 
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Figure 5.6: Theoretically calculated instability temperatures as compared to experimen- 

tally measured order disorder transition temperatures. 

The experimental phase diagram of Co-Pt shows that the order disorder transition 

temperature for 75% concentration of Pt higher than 25% concentration of Pt. But 

the experimental phase diagrams of Fe-Pt and Ni-Pt show the order disorder transition 

temperature for 25% concentration of Pt higher than 75% concentration of Pt. Our 

calculation for Fe-Pt and Ni-Pt (shown in chapter 4) show the similar trend of instability 

temperature as that of experimental trend of order disorder transition temperature. In Co- 
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Pt  our calculated instability temperature at 25% concentration of Pt is higher than that 
of 75% concentration of Pt. But the experimental order disorder transition temperature 
is otherwayround as pointed out above. This calls the need for further investigation in 
terms of important effects that might have been overlooked. One important effect among 
these could have been the neglect of possible local moment formations in the paramagnetic 
CoPt and CoPt3 alloy systems which might be relatively more important than that in 
Fe-Pt systems. The next important effect to be taken into account in general for all alloy 
systems studied is the effect of electrostatic contribution in the effective pair interaction 
energies and the effect of multisite interactions in addition to the pair interaction. 

Our comparison of calculated transition temperatures for Fe-Pt and Co-Pt shows that 
the transition temperatures for corresponding concentrations of Pt in these alloys increase 
as we go from Fe-Pt to Co-Pt (and then to Ni-Pt (shown in chapter 3). 

5.1.4 Short range order 

The SRO parameters a(k) for different ordering stars calculated using pair interaction 
energies (T = 0) for Fe-Pt and Co-Pt alloys at 25, 50 and 75% concentration of Pt are 
shown in the Table 5.3. These SRO values were calculated at 10 K above the instability 
temperatures using above explained first four nearest neighbour pair interaction energies 
to see the effect of SRO in the disordered phase. These SRO values show the peak 
positions at < 100 >. These peak positions correspond to the diffused scattering peaks 
which clearly show the L12 short range ordering for 25 and 75% and L10 short range 
ordering for 50% concentration of Pt in the disordered phase of these alloy systems. In 
Figure 5.7 we show the concentration dependence of SRO peaks a < 100 >. For 50% 
concentration of Pt in Fe-Pt and Co-Pt the magnitude of SRO peak is maximum. Next 
higher peak magnitude is for 25% concentration of Pt in these alloys and the least is 
for 75% concentration of Pt. The trend matches with the trend of experimental order 
disorder transition temperature. 

The SRO patterns for CooPt with magnetic contribution match with the patterns 
obtained by the Fourier transform of Capitan et al (1999)'s experimental real space SRO 
parameters which is shown in the Figure 5.8. If we compare with the non-magnetic SRO 
< 100 > patterns we see there is enhancement in the SRO peak which indicates that 
the magnetism actually enhances the short range ordering in the disordered phase of this 

alloy. 

The SRO patterns obtained for CoPt3 using our theoretically calculated pair interac- 
tion energies and that the patterns obtained by the Fourier transform of Kentzinger et al 
(2000)'s real space SRO parameters agree reasonably well (shown in Figure 5.9), although 



Phase stability analysis in Fe-Pt and Co-Pt alloy systems 109 

Table 5.3: Short range order a < hk l  >. The values inside bracket in the case of 25% 

concentration of Pt  in Co-Pt are with the magnetic contribution. 

I i i  Conc. Expt. a < 000 > a < 100 > a < 1�89 > a < ~ > 

of Pt (x) ordering 

Fel_xPt~ 

0.25 < 100 > L12 0.009 2.987 0.035 

0.50 < 100 > Llo 0.010 3.965 

0.75 < 100 > L12 0.014 2.720 

Coz-xPtx 

0.25 
1 ,  

< 100 > L12 

< 100 > L12 

0.006[0.004] 
[0.013] 

0.50 < 100 > Llo 0.007 

0.75 
2* 

< 100 > L12 
< 100 > L12 

I, : Capitan 

0.009 

0.035 

et al (1999); 

2.834[3.045] 

[3.063] 

3.943 

2.851 

3.014 

0.106 

0:077 0.036 

0.173 0.053 

0.10610.144] 0.023[0.028] 

[0.057] [0.024] 
0.217 0.030 

0.222 

0.034 

2, : Kentzinger et al (2000) 

0.035 
0.025 

the effective pair potential  surfaces have been shown to differ quite a bit as discussed in 

Section 5.1.2. This in turn points to nonuniqueness of the scheme to extract the pair 

interaction energies from experimentally measured SRO data. 
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Figure 5.7: Plot of SRO, a(100) values in Fe-Pt and Co-Pt alloys which shows the 

concentration dependence in the short range order. 
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Figure 5.8: SRO (c~(k)) patterns for Co3Pt alloy system in the (hk0) plane using our 
theoretically calculated pair interaction energies (i) without magnetic contribution and 
(ii) with magnetic contribution and (iii) using real space SRO parameters from the ferro- 
magnetic experimental measurement of Capitan Capitan et al (1999). The peaks in the 
contour plots locate the peaks in the short range order pat terns .  The plots were drawn 
at 10 K above the calculated instability temperature. 

Figure 5.9: SRO (c~(k)) patterns for CoPt3 alloy system in the (hk0) plane using (i) our 
theoretically calculated pair interaction energies and (ii) experimentally measured real 
space SRO values by Kentzinger et al (2000). The peaks in the contour plots locate 
the peaks in the short range order patterns. The plots were drawn at 10 K above the 
calculated instability temperature. 

5 . 2  S u m m a r y  

We have applied our theory for chemical order in metallic alloys for Fe-Pt and Co-Pt 

systems. Our investigation indicates the chemical ordering tendency in these alloys. There 
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is short range ordering tendency in the disordered phase of these alloys. Taking the 
example of Co3Pt we have demonstrated how the magnetism plays a role in chemical 
order within the Stoner approach. We have compared our calculations of atomic short 
range order in Co3Pt and CoPt~ with diffuse x-ray and neutron scattering experiments and 
obtained fair agreements. In this study of Fe-Pt and Co-Pt alloys we have demonstrated 
that  our augmented space recursion method coupled with orbital peeling in the basis of 
linear muffin tin orbital is capable for accurate prediction of chemical order. 



Chapter  6 

Ordering in 3d-5d (CuAu) 
(CuAg) Systems 

and segregation in 3d-4d 

Recently Wang and Zunger (2003) have studied ordered CuAu and CuAg alloys and 
pointed out the effect of relativistic corrections in the formation energies in these alloys. 
In this chapter we shall show, through a first-principle calculation, that in binary alloys of 
CuAu the relativistic shift of the 5d band of Au brings it closer to the 3d band of Cu greatly 
enhancing 3d-5d hybridization. In addition, the relativistic contraction of s-orbital leads to 
a reduction of the equilibrium lattice constant around Au, thus lowering the size mismatch 
with Cu. This reduces the strain energy associated with packing 3d and 5d atoms of 
dissimilar sizes onto a given lattice. The amount of both the enhanced d-d hybridization 
and the reduced packing strain are larger in CuAu than in CuAg. This explains why CuAu 
forms stable ordered alloys, while the isovalent CuAg, made of elements from the same 
columns in the periodic table, phase separates. Simple arguments, such as atomic size- 
mismatch or electro-negativity differences, do not explain these contrasting behaviours 
between CuAg and CuAu. In fact, the constituent elements in the stable CuAu alloys 
have larger atomic size mismatch than the unstable CuAg. 

We extend the study made by Wang and Zunger (2003) to disordered alloys. We show 
the differences in the stability of 3d-5d (CuAu) and 3d-4d (CuAg)alloys arise mainly due 
to relativistic corrections. We examine the effect of relativistic corrections to the pair 
energies and order disorder transition temperatures in these alloys. The short-ranged 
order or segregation patterns in CuAu/CuAg alloys is also studied within the Krivoglaz- 
Moss-Clapp model. 

~'rhe contents of this chapter has been submitted to Physica B : Condensed Matter (2004) 

112 
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Table 6.1: Formation energies in mRyd/atom. The values shown in the brackets are 
without relativistic corrections. 

Alloy system AH/o~,~ AHelast AHeh~,~ 

CuAg (this work) 6.21 (8.13) 16.30 (17.49) -10.09 (-9.36) 
Wang and Zunger (2003) 7.51 (9.34) 18.74 (19.66) -11.23 (-10.32) 

CuAu (this work) -5.97 (10.72) 19.20 (28.99) -25.17 (-18.27) 
Wang and Zunger (2003) -3.64 (12.16) 27.43 (35.13) -31.07 (-22.97) 

6.1  Resu l t s  a n d  d i scuss ions  

6.1.1 Calculations on ordered alloys 

Formation energies : 

In Table 6.1, we show the formation energies of the L10 structure of CuAg and CuAu 
alloys calculated relativistically (including mass velocity and Darwin correction but with 
out spin orbit couplings) as well as non-relativistically. The calculations were performed 
taking the same lattice parameters that calculated by Wang and Zunger (2003). The 
relativistically calculated formation energies (in mRyd/atom) are 6.21 and -5.97 for CuAg 
and CuAu. We see the clear trend of ordered alloy formation in the case of CuAu as 
contrasted with the phase-separating tendency of CuAg. To gain better insight into those 
trends following the argument of Wang and Zunger (2003), we have decomposed the total 
formation energies into the chemical formation energy and the elastic formation energy. 
The elastic energy of formation is the energy needed to deform the elemental solids A and 
B from their respective equilibrium lattice constants to the lattice constants of the final 
AB alloy. 

 ge,ost = x [ZA(a)  - EA(a )] + (1 -- x ) [ E . ( a )  - E . ( a ~  

The chemical energy of formation is simply the difference between the (fully relaxed) 
total energy of the alloy and the energies of the de-formed constituents. 

AHchem = E(AxBI-x; a) - xEA(a) -- (1 - x)Es(a) 

where a is equilibrium lattice constant of alloy, a ~ and a ~ are equilibrium lattice constants 
of the constituents and x is the concentration of one of the constituents. 
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Thus AHetast is a volume deformation energy of the constituents, and AHch~m is the 
constant volume energy change between the prepared constituents and the compound, 
which consists of any chemical effect such as hybridization, charge transfer, altered band 
occupation etc. Since a deformation of equilibrium structures is involved, one expects 
AH~t~st > 0. In general the chemical formation energy is negative. The sum gives 
the conventional definition of alloy formation energy and the system is stable only if this 
formation energy is negative. 

AH = AHe~ast + AHche,~ (6.1) 

Table 6.1, shows that the relativistic effect significantly reduces the elastic energy of 
formation of 3d-5d alloys ( e.g. from 28.99 to 19.20 mRyd/atom in CuAu). This effect is 
much smaller in the 3d-4d systems ( e.g. 17.49 to 16.30 mRyd/atom in CuAg). The reason 
for this can also be appreciated by inspecting the non-relativistically-and relativistically- 
calculated equilibrium lattice constants of the FCC elements as already shown by Wang 
and Zunger (2003). 

Table 6.2: Potential parameters (Ad) in mRyd/atom. The values shown in the brackets 
are without relativistic corrections. 

Alloy system Site (A/B) Ad 
CuAg Cu 7.2 (6.6) 

Ag 15.7 (!4.0) 
CuAu Cu 7.0 (5.9) 

Au 22.2 (17.3) 

In addition to reduction in the magnitude of elastic energy of formation, Table 6.1 also 
shows that relativistic corrections enhance the magnitude of chemical energy of formation 
(e.g. from -18.27 to -25.17 mRyd/atom in CuAu). This effect is much smaller in 3d-4d 
alloys (e.g. from -9.36 to -10.09 mRyd/atom in CuAg). There are two effects that explain 
this relativistic chemical stabilization. First the relativistic raising of the energy of the 
5d state reduces the 3d-5d energy difference and thus improve the 3d-5d hybridization. 
Table 6.2 shows the potential parameter (A) for d orbitals of Cu, Ag and Au in CuAg and 
CuAu alloys. This parameter (A) measures the hopping strength (t~j), via the relation 

dd A1/2C A1/2 



Ordering in 3d-5d (CuAu) and segregation in 3d-4d (CuAg) Systems 115 

where S~j denotes the structure matrix which is same for alloys having same lattice struc- 
ture. From Table 6.2, it is seen that the the difference in hopping strength between 3d and 
5d are higher than that of 3d and 4d in relativistic case which is the signature of higher 
overlap and hence the stability in CuAu alloys with relativistic corrections. The second 
effect is the relativistic lowering of the s band and raising of the d band leads to an in- 
creased occupation of the bonding s band and a decreased occupation of the anti-bonding 
d bands. These effects can be appreciated by integrated orbital charges shown in Table 
6.3. From Table 6.3 we also see that Au gain significant s p occupation (0.26e in CuAu) 
and lose d occupation (-0.28e in CuAu) due to the relativistic effect. The opposing trends 
in s p and d charge arrangement leads to a small net change in the total charge. Since 

the s p band increases its occupation, whereas the upper antibonding edge of d band is 

depleted, these relativistic effects increase the stability of CuAu alloys. In contrast, the 

relativistic gain in s p occupation and loss of d occupation in Ag is much smaller. 

Table 6.3: Integrated number of electrons (n) of each angular momentum type within 
the atomic spheres of Cu, Ag and Au in CuAg and CuAu alloys. The values shown 
in the brackets are without relativistic corrections. The table also shows the difference 

A r t  --~ n r e  I - -  n n o n r e l .  

Alloy system Site (A/B) s orbital p orbital d orbital 

CuAg Cu 0.69 (0.68) 0.69 (0.66) 9.62 (9.66) 
Ag 0.69 (0.65) 0.74 (0.71) 9.47 (9.55) 

CuAu Cu 0.64 (0.66) 0.72 (0.65) 9.64 (9.68) 
Au 0.86 (0.68) 0.83 (0.75) 9.18 (9.46) 

An 
CuAg Cu 0.01 0.03 -0.04 

Ag 0.04 0.03 -0.08 
CuAu Ca 

Au 
-0.02 
0.18 

0.07 
0.08 

-0.04 
-0.28 

Our results for formation energies are comparable, within the error window of our 
calculational method, to the results obtained by Wang and Zunger (2003). These authors 
used full potential linearized augmented plane wave method with exchange correlation 
functional of Ceperley and Alder (1980) parametrized by Perdew and Zunger (1981). 
They have carried out k space integration with 8 • 8 • 8 mesh resulting 60 special k points. 
On the other hand we have in our TB-LMTO calculation used von Barth and Hedin 
exchange correlation functional and we have carried out the k space integration with 
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Table 6.4: Pair energies in mRyd/atom. The values shown in the brackets are without 
relativistic corrections. Vn ~(2) where R ~ is a n-th nearest neighbour of R. 

J-J R R '  

Alloy system V1 V2 V3 V4 
CuAg -0.63"(-0.90) 0.09 (0.05) -0.02 (0.00 0.12 (0.10) 
CuAu 2.29 (-0.23) 0.19 (0.20) 0.06 (0.11) 0.21 (0.17) 

32x32x32 mesh resulting 2601 special k points to ensure the convergence of total energy. 

6.1.2 Calculations on disordered alloys 

Effective pair energies : 

In Table 6.4, we show the effective pair energies up to fourth nearest neighbour in 3d-4d 
CuAg and 3d-5d CuAu alloys. 

The first nearest neighbour pair interaction of CuAg shows segregation behaviour 
which matches with the positive value of formation energy of the ordered calculations. 

In CuAu alloy the pair interaction calculations without relativistic correction shows 
segregation tendency. Inclusion of these corrections lead to the correct conclusion of an 
ordering behaviour. Our relativistic calculation in ordered CuAu shows that the with L10 
structure has lower total energy than the A2B2 superstructure. This confirms a stable 
Llo low temperature structure of CuAu. However, the antiphase boundary energy has 
the wrong sign. This could be due to the fact that in CuAu the APB energies are long 
ranged and more than the fourth nearest neighbour values need to be taken. 

Order disorder transition temperatures : 

Using these pair interactions obtained by us, we have calculated the instability temper- 
atures in CuAu alloys with relativistic corrections. For the entropy part we have taken 
a simple mean-field Bragg-Williams expression. Our calculation in CuAu alloy shows an 
instability temperature (246~ slightly higher than the experimental estimate (137~ 

Our calculations (with relativistic corrections) on CuAg shows a disorder to segregation 
transition temperature as 184~ This temperature in non relativistic case is slightly 
enhanced (201~ Both the values are lower than experimental estimate (506~ 
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Figure 6.1: The short range order map a(k) for (left) CuAu and (right) CuAg. 

6.1.3 Short-ranged order 

The short-range order (SRO) patterns a(k) using the pair interaction energies for CuAg 
and CuAu are shown in Figure 6.1. These patterns are calculated above the order- 
ing/segregation temperatures to examine the effect of the onset of SRO in the disordered 
phase. The SRO pattern for CuAu show peaks at <100>  positions. This correspond to 
diffuse scattering peaks which clearly show the L10 short range ordering developing in 
this alloy. For CuAg the SRO pattern shows a peak at <000>,  confirming the onset of 
segregation in this alloy. 

6.2 Summary 

Our calculation for formation energies shows that CuAu alloys are stabilized by inclusion 
of relativistic effects. These effects ensures larger s-d hybridization by lowering s orbitals 
and raising d orbitals and lowers the strain and size mismatch in these alloys. Similar 
calculations show CuAg to be unstable and there is very little effect of relativity. The 
pair interaction calculations show CuAu has L10 as the stable ground state structure and 
CuAg to be a segregating system as predicted from experiments. 



Chapter 7 

Concluding remarks 

Technically important and scientifically valuable alloy systems exhibit a variety of in- 

teresting thermodynamic and energetic properties including phase ordering and phase 

segregation. These properties can be understood in terms of electronic and magnetic 

structures and are useful for the actual determination of alloy phase stability. The de- 

velopment of a theory to study these properties has two aspects. First it can reproduce 

the experimental predictions which are already available and secondly it can potentially 

provide the predictive guidance for experiment and industry. The combination of first 

principles electronic structure and simple statistical models offer this great predictive 

potential. 

The augmented space recursion combining with first principle tight binding linear muf- 

fin tin orbital (TB-LMTO) method has been established as an accurate method to study 

electronic and magnetic properties of alloys. The coupling of this method with orbital 

peeling technique is used to calculate effective pair interactions. Using these pair interac- 

tions as inputs in the statistical models like concentration wave method we calculate alloy 

phase stability. In this thesis we have taken into account the effects like scalar relativity, 

charge transfer, lattice relaxation and short range order which play important role in the 

determination of the correct tendency in electronic and magnetic properties as well as 

actual determination of ordering or segregation tendencies along with the determination 

of actual stable phase in the particular concentration of size mismatched alloy systems. 

We have generalized this methodology to study the effect of magnetism on chemical order. 

The numerical details of calculations, convergence with the number of k-points in 

the Brillouin Zone integrations, choice of atomic sphere radii, proper convergences in the 

TBLMTO-ASR, the proper choice of the minimal basis set in the TB-LMTO, all of these 

affect the electronic, magnetic structure and phase stability properties. 

In the application part we started from the study of effect of possible exchange correla- 
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tion functionals in Fe-Pt, Co-Pt and Ni-Pt alloy systems which indicates that the choice of 
exchange correlation potentials has considerable effect on the values of equilibrium lattice 
constants and magnetic moments in these alloys. The study of magnetic properties of dis- 
ordered Fe-Pt, Co-Pt and Ni-Pt alloy systems shows that the single site coherent potential 
approximation (CPA) method works reasonably well for Fe-Pt and has close agreement 
with the results obtained using augmented space recursion method. The CPA starts de- 
viating from ASR in Co-Pt and it fails in the case of Ni-Pt alloys showing increasing 
tendency of local magnetic moments of Ni with the increase of concentration of Pt which 
is opposite to the experimental and ASR trend. The inclusion of short range order effect 
in the calculation of magnetic moments of Ni-Pt alloys through generalized augmented 
space recursion method brings quantitative agreement with experimental results. 

Our study on phase stability in Ni-Pt alloy system shows that, for the correct pre- 
diction of sign in formation energy, we need to include the scalar relativistic corrections 
in our electronic structure method. The inclusion of scalar relativistic corrections and 
the proper treatment of charge transfer are must to get the experimental trend of order 
disorder transition temperature in this alloy system. 

The study on phase stability of Fe-Pt and Co-Pt indicates that the inclusion of mag- 
netic contribution in the calculation of pair interaction energies in the cases where the 
magnetic transition temperature is higher than the chemical order disorder transition 
temperature as is the case of Co3Pt system brings closer agreement with experimental 
pair interaction energies giving rise to the closer agreement with experimental chemical 
transition temperature. The systematic study in these systems indicates that there is 
short range order in the disordered phase of these alloys. The short range order maps 
compare well with the corresponding diffuse x-ray and neutron scattering experiments in 
Co3Pt and CoPt3 alloy systems. 

In the study of ordering in 3d-5d (CuAu) and segregation in 3d-4d (CuAg) Systems, 
we show the differences in the stability of 3d-5d (CuAu) and 3d-4d (CuAg) alloys arise 
mainly due to relativistic corrections. We examine the effect of relativistic corrections to 
the pair energies and instability temperatures in these alloys. The short-ranged order or 
segregation patterns in CuAu/CuAg alloys is also studied using the Krivoglaz-Moss-Clapp 
model. 

To summarize, we have systematically extended the augmented space recursion method 
with its generalization and carried out the charge self consistent calculations to take into 
account the short range ordering or clustering effects in the electronic structure of sim- 
ple substitutional binary alloys or size mismatched alloys with properly taking care of 
relativistic corrections, charge transfer and lattice relaxation. We have generalized the 
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augmented space recursion coupled with orbital peeling technique to take into account of 
magnetism on chemical order of these alloy systems. The application part demonstrates 
that (i) the generalized augmented space recursion method is capable of estimating the 
effect of immediate environment (short range order or segregation) on electronic structure 
and magnetism, (ii) the augmented space recursion coupled with orbital peeling technique 
together with simple statistical mean field models can predict the experimental trends in 
chemical ordering or segregation including magnetism wherever it is necessary and then 
determine the stable phases in these alloy systems. 
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